Closed-loop optimization of fast-charging protocols for batteries with machine learning

贝叶斯优化 计算机科学 电池(电) 航程(航空) 钥匙(锁) 过程(计算) 可靠性工程 机器学习 工程类 功率(物理) 计算机安全 量子力学 操作系统 物理 航空航天工程
作者
Peter M. Attia,Aditya Grover,Norman Jin,Kristen Severson,Todor Markov,Yang-Hung Liao,Michael H. Chen,Bryan Cheong,Nicholas Perkins,Zi Yang,Patrick Herring,Muratahan Aykol,Stephen J. Harris,Richard D. Braatz,Stefano Ermon,William C. Chueh
出处
期刊:Nature [Nature Portfolio]
卷期号:578 (7795): 397-402 被引量:776
标识
DOI:10.1038/s41586-020-1994-5
摘要

Simultaneously optimizing many design parameters in time-consuming experiments causes bottlenecks in a broad range of scientific and engineering disciplines1,2. One such example is process and control optimization for lithium-ion batteries during materials selection, cell manufacturing and operation. A typical objective is to maximize battery lifetime; however, conducting even a single experiment to evaluate lifetime can take months to years3–5. Furthermore, both large parameter spaces and high sampling variability3,6,7 necessitate a large number of experiments. Hence, the key challenge is to reduce both the number and the duration of the experiments required. Here we develop and demonstrate a machine learning methodology to efficiently optimize a parameter space specifying the current and voltage profiles of six-step, ten-minute fast-charging protocols for maximizing battery cycle life, which can alleviate range anxiety for electric-vehicle users8,9. We combine two key elements to reduce the optimization cost: an early-prediction model5, which reduces the time per experiment by predicting the final cycle life using data from the first few cycles, and a Bayesian optimization algorithm10,11, which reduces the number of experiments by balancing exploration and exploitation to efficiently probe the parameter space of charging protocols. Using this methodology, we rapidly identify high-cycle-life charging protocols among 224 candidates in 16 days (compared with over 500 days using exhaustive search without early prediction), and subsequently validate the accuracy and efficiency of our optimization approach. Our closed-loop methodology automatically incorporates feedback from past experiments to inform future decisions and can be generalized to other applications in battery design and, more broadly, other scientific domains that involve time-intensive experiments and multi-dimensional design spaces. A closed-loop machine learning methodology of optimizing fast-charging protocols for lithium-ion batteries can identify high-lifetime charging protocols accurately and efficiently, considerably reducing the experimental time compared to simpler approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XING完成签到 ,获得积分10
1秒前
ZZZ完成签到 ,获得积分10
2秒前
酷波er应助江二毛采纳,获得10
7秒前
Xiang发布了新的文献求助30
7秒前
8秒前
10秒前
10秒前
11秒前
12秒前
机灵柚子应助子铭采纳,获得20
13秒前
Jia发布了新的文献求助10
14秒前
子星发布了新的文献求助10
14秒前
希望天下0贩的0应助lvsehx采纳,获得10
14秒前
Xiang完成签到,获得积分10
15秒前
望北楼主发布了新的文献求助10
15秒前
18秒前
笑点低的斌完成签到,获得积分20
18秒前
21秒前
英姑应助kala采纳,获得10
21秒前
孙成成发布了新的文献求助10
23秒前
24秒前
24秒前
我是老大应助子星采纳,获得10
26秒前
26秒前
26秒前
huangdanxue完成签到,获得积分10
27秒前
江二毛发布了新的文献求助10
27秒前
28秒前
28秒前
lvsehx发布了新的文献求助10
29秒前
29秒前
轻松的白容完成签到,获得积分20
29秒前
Xieyusen发布了新的文献求助10
30秒前
32秒前
00完成签到,获得积分10
33秒前
Yancy发布了新的文献求助10
34秒前
橘子祭洲发布了新的文献求助10
34秒前
董大米发布了新的文献求助10
37秒前
本本发布了新的文献求助10
37秒前
小吴同学来啦完成签到,获得积分10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965083
求助须知:如何正确求助?哪些是违规求助? 3510376
关于积分的说明 11153120
捐赠科研通 3244755
什么是DOI,文献DOI怎么找? 1792550
邀请新用户注册赠送积分活动 873906
科研通“疑难数据库(出版商)”最低求助积分说明 804024