Closed-loop optimization of fast-charging protocols for batteries with machine learning

贝叶斯优化 计算机科学 电池(电) 航程(航空) 钥匙(锁) 过程(计算) 可靠性工程 机器学习 工程类 功率(物理) 计算机安全 量子力学 操作系统 物理 航空航天工程
作者
Peter M. Attia,Aditya Grover,Norman Jin,Kristen Severson,Todor Markov,Yang-Hung Liao,Michael H. Chen,Bryan Cheong,Nicholas Perkins,Zi Yang,Patrick Herring,Muratahan Aykol,Stephen J. Harris,Richard D. Braatz,Stefano Ermon,William C. Chueh
出处
期刊:Nature [Nature Portfolio]
卷期号:578 (7795): 397-402 被引量:758
标识
DOI:10.1038/s41586-020-1994-5
摘要

Simultaneously optimizing many design parameters in time-consuming experiments causes bottlenecks in a broad range of scientific and engineering disciplines1,2. One such example is process and control optimization for lithium-ion batteries during materials selection, cell manufacturing and operation. A typical objective is to maximize battery lifetime; however, conducting even a single experiment to evaluate lifetime can take months to years3–5. Furthermore, both large parameter spaces and high sampling variability3,6,7 necessitate a large number of experiments. Hence, the key challenge is to reduce both the number and the duration of the experiments required. Here we develop and demonstrate a machine learning methodology to efficiently optimize a parameter space specifying the current and voltage profiles of six-step, ten-minute fast-charging protocols for maximizing battery cycle life, which can alleviate range anxiety for electric-vehicle users8,9. We combine two key elements to reduce the optimization cost: an early-prediction model5, which reduces the time per experiment by predicting the final cycle life using data from the first few cycles, and a Bayesian optimization algorithm10,11, which reduces the number of experiments by balancing exploration and exploitation to efficiently probe the parameter space of charging protocols. Using this methodology, we rapidly identify high-cycle-life charging protocols among 224 candidates in 16 days (compared with over 500 days using exhaustive search without early prediction), and subsequently validate the accuracy and efficiency of our optimization approach. Our closed-loop methodology automatically incorporates feedback from past experiments to inform future decisions and can be generalized to other applications in battery design and, more broadly, other scientific domains that involve time-intensive experiments and multi-dimensional design spaces. A closed-loop machine learning methodology of optimizing fast-charging protocols for lithium-ion batteries can identify high-lifetime charging protocols accurately and efficiently, considerably reducing the experimental time compared to simpler approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
prim发布了新的文献求助10
刚刚
1秒前
2秒前
rayzhanghl完成签到,获得积分10
4秒前
Ava应助缥缈冰珍采纳,获得10
4秒前
zgd完成签到 ,获得积分10
4秒前
jackten发布了新的文献求助10
4秒前
寄草完成签到,获得积分10
5秒前
5秒前
青云完成签到,获得积分10
6秒前
岳凯发布了新的文献求助10
8秒前
梨里完成签到 ,获得积分10
11秒前
儒雅的豁完成签到,获得积分10
11秒前
苑阿宇完成签到 ,获得积分10
12秒前
ljx完成签到 ,获得积分10
15秒前
隐形曼青应助可可采纳,获得10
16秒前
材料打工人完成签到,获得积分10
22秒前
上官若男应助prim采纳,获得10
23秒前
wenbo完成签到,获得积分10
29秒前
玛卡巴卡应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得20
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
上官若男应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
wanci应助科研通管家采纳,获得20
30秒前
yikeshu应助科研通管家采纳,获得20
30秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
pluto应助科研通管家采纳,获得20
31秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
玛卡巴卡应助科研通管家采纳,获得10
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
搜集达人应助科研通管家采纳,获得20
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776193
求助须知:如何正确求助?哪些是违规求助? 3321721
关于积分的说明 10207206
捐赠科研通 3036940
什么是DOI,文献DOI怎么找? 1666486
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757859