Advances and Open Problems in Federated Learning

计算机科学 数据科学 透视图(图形) 开放式研究 密码学 人工智能 万维网 计算机安全
作者
Peter Kairouz,H. Brendan McMahan,Brendan Avent,Aurélien Bellet,Mehdi Bennis,Arjun Nitin Bhagoji,Kallista Bonawitz,Zachary Charles,Graham Cormode,Rachel Cummings,Rafael G. L. D’Oliveira,Hubert Eichner,Salim El Rouayheb,David Evans,Josh Gardner,Zachary Garrett,Adrià Gascón,Badih Ghazi,Phillip B. Gibbons,Marco Gruteser,Zaïd Harchaoui,Chaoyang He,Lingxiao He,Zhouyuan Huo,Ben Hutchinson,Justin Hsu,Martin Jäggi,Tara Javidi,Gauri Joshi,Mikhail Khodak,Jakub Konecní,Aleksandra Korolova,Farinaz Koushanfar,Sanmi Koyejo,Tancrède Lepoint,Yang Liu,Prateek Mittal,Mehryar Mohri,Richard Nock,Ayfer Özgür,Rasmus Pagh,Hang Qi,Daniel Ramage,Ramesh Raskar,Mariana Raykova,Dawn Song,Weikang Song,Sebastian U. Stich,Ziteng Sun,Ananda Theertha Suresh,Florian Tramèr,Praneeth Vepakomma,Jianyu Wang,Li Xiong,Zheng Xu,Qiang Yang,Felix X. Yu,Han Yu,Sen Zhao
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:73
标识
DOI:10.1561/2200000083
摘要

The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client’s raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective. Since then, the topic has gathered much interest across many different disciplines and the realization that solving many of these interdisciplinary problems likely requires not just machine learning but techniques from distributed optimization, cryptography, security, differential privacy, fairness, compressed sensing, systems, information theory, statistics, and more. This monograph has contributions from leading experts across the disciplines, who describe the latest state-of-the art from their perspective. These contributions have been carefully curated into a comprehensive treatment that enables the reader to understand the work that has been done and get pointers to where effort is required to solve many of the problems before Federated Learning can become a reality in practical systems. Researchers working in the area of distributed systems will find this monograph an enlightening read that may inspire them to work on the many challenging issues that are outlined. This monograph will get the reader up to speed quickly and easily on what is likely to become an increasingly important topic: Federated Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代rong完成签到,获得积分10
刚刚
刚刚
harry完成签到,获得积分10
刚刚
张丁发布了新的文献求助10
刚刚
NexusExplorer应助朴素大叔采纳,获得10
1秒前
2秒前
SciGPT应助qingxuan采纳,获得10
2秒前
果果发布了新的文献求助100
2秒前
orixero应助掮客采纳,获得10
2秒前
陈艳林发布了新的文献求助10
2秒前
风希发布了新的文献求助20
2秒前
Ava应助地学韦丰吉司长采纳,获得10
3秒前
3秒前
有志不在年糕完成签到,获得积分10
3秒前
复杂数据线完成签到,获得积分10
3秒前
hhh完成签到,获得积分10
3秒前
guozizi发布了新的文献求助20
3秒前
浮游应助追寻紫安采纳,获得10
4秒前
xiaoyao完成签到,获得积分10
4秒前
123zyuyu发布了新的文献求助10
5秒前
陈pc完成签到,获得积分10
5秒前
hony发布了新的文献求助10
5秒前
6秒前
Yanxb完成签到,获得积分10
6秒前
6秒前
6秒前
zz发布了新的文献求助10
6秒前
6秒前
付威威完成签到,获得积分10
7秒前
在水一方应助德芙采纳,获得10
7秒前
7秒前
白芷当归举报量子星尘求助涉嫌违规
7秒前
qiqi发布了新的文献求助10
8秒前
8秒前
爆米花应助火龙果采纳,获得30
8秒前
青柏发布了新的文献求助10
8秒前
搜集达人应助张丁采纳,获得10
9秒前
Ceaser完成签到,获得积分10
10秒前
10秒前
共享精神应助菠萝采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
A Systemic-Functional Study of Language Choice in Singapore 550
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4872145
求助须知:如何正确求助?哪些是违规求助? 4162064
关于积分的说明 12908552
捐赠科研通 3918456
什么是DOI,文献DOI怎么找? 2151375
邀请新用户注册赠送积分活动 1169773
关于科研通互助平台的介绍 1073515