How much can the Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS‐Cog) tell us? Insights from a latent state‐trait auto‐regressive (LST‐AR) model

心理学 认知 痴呆 特质 认知心理学 一致性(知识库) 计算机科学 人工智能 医学 疾病 精神科 程序设计语言 病理
作者
Hugo Cogo‐Moreira,Saffire H. Krance,Jennifer S. Rabin,Krista L. Lanctôt,Nathan Herrmann,Bradley J. MacIntosh,Sandra E. Black,Michael Eid,Walter Swardfager
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:16 (S6)
标识
DOI:10.1002/alz.041582
摘要

Abstract Background The ADAS‐Cog assesses several cognitive domains and is the international gold standard for monitoring cognitive decline in clinical trials for Alzheimer’s disease (AD) dementia. These manifold cognitive deficits can progress differently and therefore, individual ADAS‐Cog items may contain different sources of information: some predictable based on the baseline score (i.e. trait), and some based on progression from one occasion to the next (i.e. accumulated or “autoregressive” effects), while some reflects unpredictable “occasion specific” fluctuations in symptoms (i.e state). Method Over multiple occasions of measurement, latent state‐trait autoregressive (LST‐AR) models can be used to decompose each item into reliable consistent information (composed of trait information and accumulated effects), reliable occasion‐specific information (i.e. state effects), and unreliable information (i.e. measurement error). Thus, consistency (trait + accumulated effects) and reliability (consistency + occasion specificity) can be determined for each item, at each assessment. The LST‐AR model was fit to four waves of data assessments (baseline, 6, 12 and 24 months) among 341 mild AD patients that participated in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Result The reliabilities of the memory (43.4%‐80.1%) and language (63.8%‐92.5%) items were generally greater than those of the praxis (average of 65.6%) and orientation (average of 60.8%) items. At the last assessment, all of the memory and language items had more consistency (ranging from 63.4% for comprehension of spoken language to 88.2% for word recognition) than occasion specificity. Disentangling the consistency into traits and accumulated effects, the items most reflective of traits were word recognition (79.4%) and commands (64.1%). Word recall, orientation and naming tasks contained roughly equal amounts of trait and accumulated information. Scores on comprehension of spoken language and spoken language ability were mainly related to accumulated effects (71.4% and 64.7%, respectively). Conclusion In mild AD, most individual ADAS‐Cog memory and language items were reliable over time. Moreover, the scale captured additional information about the state, trait and accumulated effects of AD; the memory items tended to be more reflective of trait differences between subjects, whereas the language items tended to reflect effects that accumulated from one visit to the next, consistent with the typical progression of AD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吴晨曦发布了新的文献求助20
2秒前
韭菜盒子发布了新的文献求助10
2秒前
Yangon发布了新的文献求助10
3秒前
5秒前
6秒前
Aesias完成签到,获得积分10
6秒前
cc完成签到,获得积分10
7秒前
吴晨曦完成签到,获得积分10
9秒前
9秒前
9秒前
Arimson完成签到,获得积分10
10秒前
杨小鸿发布了新的文献求助10
10秒前
10秒前
Owen应助贤惠的源智采纳,获得30
10秒前
量子星尘发布了新的文献求助10
12秒前
狂野宛丝完成签到,获得积分10
12秒前
Bizibili完成签到,获得积分10
13秒前
天丶灵灵发布了新的文献求助10
14秒前
14秒前
daniel2233发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
xutaiyu发布了新的文献求助10
15秒前
16秒前
TheDing完成签到,获得积分10
16秒前
何飞莲发布了新的文献求助10
16秒前
充电宝应助何霖采纳,获得10
18秒前
烟花应助天丶灵灵采纳,获得10
19秒前
Lekai发布了新的文献求助10
20秒前
20秒前
ding应助飞翔的企鹅采纳,获得10
20秒前
21秒前
kayla发布了新的文献求助10
21秒前
22秒前
司徒沛蓝发布了新的文献求助10
22秒前
24秒前
宗语雪完成签到,获得积分10
24秒前
中中中完成签到,获得积分20
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060