Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities

计算机科学 深度学习 上下文图像分类 人工智能 遥感 计算机视觉 图像(数学) 地理
作者
Gong Cheng,Xingxing Xie,Junwei Han,Lei Guo,Gui-Song Xia
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 3735-3756 被引量:670
标识
DOI:10.1109/jstars.2020.3005403
摘要

Remote sensing image scene classification, which aims at labeling remote sensing images with a set of semantic categories based on their contents, has broad applications in a range of fields. Propelled by the powerful feature learning capabilities of deep neural networks, remote sensing image scene classification driven by deep learning has drawn remarkable attention and achieved significant breakthroughs. However, to the best of our knowledge, a comprehensive review of recent achievements regarding deep learning for scene classification of remote sensing images is still lacking. Considering the rapid evolution of this field, this paper provides a systematic survey of deep learning methods for remote sensing image scene classification by covering more than 160 papers. To be specific, we discuss the main challenges of remote sensing image scene classification and survey (1) Autoencoder-based remote sensing image scene classification methods, (2) Convolutional Neural Network-based remote sensing image scene classification methods, and (3) Generative Adversarial Network-based remote sensing image scene classification methods. In addition, we introduce the benchmarks used for remote sensing image scene classification and summarize the performance of more than two dozen of representative algorithms on three commonly-used benchmark data sets. Finally, we discuss the promising opportunities for further research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助惠惠采纳,获得10
1秒前
小肉包发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
DJ发布了新的文献求助10
2秒前
上官蔚蓝发布了新的文献求助10
2秒前
JamesPei应助专注的曼寒采纳,获得10
2秒前
polkmn完成签到,获得积分10
2秒前
2秒前
彩色小鸽子完成签到,获得积分10
3秒前
筱姐姐发布了新的文献求助10
3秒前
3秒前
科目三应助GHJ采纳,获得10
3秒前
Jasper应助小肉包采纳,获得10
5秒前
jujumaomao完成签到,获得积分10
5秒前
122发布了新的文献求助10
5秒前
5秒前
安眠药完成签到 ,获得积分10
6秒前
杨杨关注了科研通微信公众号
6秒前
Suaia完成签到,获得积分10
6秒前
闪闪的荟完成签到,获得积分10
6秒前
姜且发布了新的文献求助10
6秒前
6秒前
7秒前
千风完成签到,获得积分10
7秒前
fys完成签到,获得积分10
7秒前
7秒前
7秒前
自由发布了新的文献求助10
8秒前
优雅依玉发布了新的文献求助10
8秒前
Shaw发布了新的文献求助10
8秒前
wuy发布了新的文献求助10
8秒前
9秒前
Wangdx完成签到 ,获得积分10
9秒前
坚定如南发布了新的文献求助10
9秒前
华仔应助迟来的内啡肽采纳,获得10
9秒前
9秒前
科研通AI6应助star采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887