Atrial Fibrillation Detection During Sepsis: Study on MIMIC III ICU Data

心房颤动 重症监护室 医学 阈值 败血症 心电图 重症监护 样本熵 心脏病学 人工智能 内科学 模式识别(心理学) 计算机科学 重症监护医学 图像(数学)
作者
Syed Khairul Bashar,Md-Billal Hossain,Eric Ding,Allan J. Walkey,David D. McManus,Ki H. Chon
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 3124-3135 被引量:53
标识
DOI:10.1109/jbhi.2020.2995139
摘要

Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high risk that new-onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. As a result, computer aided automated and reliable detection of new-onset AF during sepsis is crucial, especially for the critically ill patients in the intensive care unit (ICU). In this paper, a novel automated and robust two-step algorithm to detect AF from ICU patients using electrocardiogram (ECG) signals is presented. First, several statistical parameters including root mean square of successive differences, Shannon entropy, and sample entropy were calculated from the heart rate for the screening of possible AF segments. Next, Poincaré plot-based features along with P-wave characteristics were used to reduce false positive detection of AF, caused by the premature atrial and ventricular beats. A subset of the Medical Information Mart for Intensive Care (MIMIC) III database containing 198 subjects was used in this study. During the training and validation phases, both the simple thresholding as well as machine learning classifiers achieved very high segment-wise AF classification performance. Finally, we tested the performance of our proposed algorithm using two independent test data sets and compared the performance with two state-of-the-art methods. The algorithm achieved an overall 100% sensitivity, 98% specificity, 98.99% accuracy, 98% positive predictive value, and 100% negative predictive value on the subject-wise AF detection, thus showing the efficacy of our proposed algorithm in critically ill sepsis patients. The annotations of the data have been made publicly available for other investigators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jovid完成签到,获得积分10
刚刚
檬小洋完成签到,获得积分10
刚刚
001发布了新的文献求助10
1秒前
4秒前
852应助linj采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
搜集达人应助volcanoes采纳,获得10
7秒前
伯赏松思完成签到,获得积分10
8秒前
8秒前
8秒前
juanjuan完成签到,获得积分20
10秒前
canvasss发布了新的文献求助10
10秒前
10秒前
学者宫Sir发布了新的文献求助10
10秒前
11秒前
LV完成签到 ,获得积分10
11秒前
NII完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
小蘑菇应助XZZH采纳,获得50
13秒前
杨玉晨应助坦率的蝴蝶采纳,获得10
13秒前
大个应助jeeet采纳,获得10
14秒前
Ava应助润泽采纳,获得10
14秒前
14秒前
elang发布了新的文献求助10
15秒前
YHHHH完成签到,获得积分10
15秒前
xjcy应助cheng4046采纳,获得10
16秒前
王闪闪完成签到,获得积分10
16秒前
小柠檬发布了新的文献求助10
16秒前
16秒前
ximi发布了新的文献求助10
17秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4288487
求助须知:如何正确求助?哪些是违规求助? 3815718
关于积分的说明 11950155
捐赠科研通 3460424
什么是DOI,文献DOI怎么找? 1897939
邀请新用户注册赠送积分活动 946366
科研通“疑难数据库(出版商)”最低求助积分说明 849752