Data Analytics on Graphs Part III: Machine Learning on Graphs, from Graph Topology to Applications

计算机科学 图形 拓扑图论 数据分析 分析 理论计算机科学 数据科学 折线图 路宽 数据挖掘
作者
Ljubiša Stanković,Danilo P. Mandic,Miloš Daković,Miloš Brajović,Bruno Scalzo,Shengxi Li,A.G. Constantinides
出处
期刊:Foundations and trends in machine learning [Now Publishers]
卷期号:13 (4): 332-530 被引量:55
标识
DOI:10.1561/2200000078-3
摘要

Modern data analytics applications on graphs often operate on domains where graph topology is not known a priori, and hence its determination becomes part of the problem definition, rather than serving as prior knowledge which aids the problem solution. Part III of this monograph starts by a comprehensive account of ways to learn the pertinent graph topology, ranging from the simplest case where the physics of the problem already suggest a possible graph structure, through to general cases where the graph structure is to be learned from the data observed on a graph. A particular emphasis is placed on the use of standard “relationship measures” in this context, including the correlation and precision matrices, together with the ways to combine these with the available prior knowledge and structural conditions, such as the smoothness of the graph signals or sparsity of graph connections. Next, for learning sparse graphs (that is, graphs with a small number of edges), the utility of the least absolute shrinkage and selection operator, known as (LASSO) is addressed, along with its graph specific variant, the graphical LASSO. For completeness, both variants of LASSO are derived in an intuitive way, starting from basic principles. An in-depth elaboration of the graph topology learning paradigm is provided through examples on physically well defined graphs, such as electric circuits, linear heat transfer, social and computer networks, and spring-mass systems. We also review main trends in graph neural networks (GNN) and graph convolutional networks (GCN) from the perspective of graph signal filtering. Particular insight is given to the role of diffusion processes over graphs, to show that GCNs can be understood from the graph diffusion perspective. Given the largely heuristic nature of the existing GCNs, their treatment through graph diffusion processes may also serve as a basis for new designs of GCNs. Tensor representation of lattice-structured graphs is next considered, and it is shown that tensors (multidimensional data arrays) can be treated as a special class of graph signals, whereby the graph vertices reside on a high-dimensional regular lattice structure. Finally, the concept of graph tensor networks is shown to provide a unifying framework for learning of big data on irregular domains. This part of monograph concludes with an in-dept account of emerging applications in financial data processing and underground transportation network modeling. More specifically, by means of portfolio cuts of an asset graph, we show how domain knowledge can be meaningfully incorporated into investment analysis, while the underground transportation example addresses vulnerability of stations in the London underground network to traffic disruption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jughead发布了新的文献求助10
刚刚
完美世界应助sjc采纳,获得10
刚刚
flying蝈蝈完成签到,获得积分10
3秒前
小张关注了科研通微信公众号
3秒前
4秒前
小歘歘完成签到 ,获得积分10
4秒前
十言发布了新的文献求助10
4秒前
吴_5完成签到 ,获得积分10
5秒前
5秒前
无花果应助flying蝈蝈采纳,获得10
6秒前
安元菱完成签到 ,获得积分10
7秒前
AA简单男孩完成签到,获得积分10
7秒前
舒适的逊完成签到,获得积分10
8秒前
Bin_Liu发布了新的文献求助10
9秒前
xxh完成签到,获得积分10
10秒前
漫天发布了新的文献求助10
10秒前
夏天发布了新的文献求助10
10秒前
十言完成签到,获得积分10
12秒前
哈哈哈哈完成签到,获得积分10
12秒前
12秒前
13秒前
龚仕杰完成签到 ,获得积分10
13秒前
13秒前
zik应助小超人哈里采纳,获得10
13秒前
小明完成签到 ,获得积分10
13秒前
瘦瘦的秋柔完成签到 ,获得积分10
16秒前
红与黑完成签到,获得积分10
18秒前
18秒前
18秒前
科研狼完成签到,获得积分10
19秒前
张梓桐完成签到,获得积分10
19秒前
liqian发布了新的文献求助10
19秒前
情怀应助苏格拉底的嘲笑采纳,获得10
19秒前
柯学家完成签到 ,获得积分10
20秒前
阳光问雁发布了新的文献求助10
20秒前
20秒前
汕头凯奇完成签到,获得积分10
21秒前
23秒前
哈哈哈发布了新的文献求助10
23秒前
陽15发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685809
关于积分的说明 14839646
捐赠科研通 4674865
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471109