清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

238O Deep-learning magnetic resonance imaging radiomics predicts platinum-sensitivity in patients with epithelial ovarian cancer

医学 磁共振成像 队列 卵巢癌 化疗 揭穿 肿瘤科 内科学 癌症 放射科
作者
L. Ruilin,Ya‐Hui Yu,Q. Li,Yongtao Tan,Zhongxuan Lin,Herui Yao
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:31: S1336-S1336
标识
DOI:10.1016/j.annonc.2020.10.232
摘要

Platinum-sensitivity is an important basis for clinical choice of chemotherapy regimens for recurrent epithelial ovarian cancer (EOC) - without effective methods to predict. We aimed to develop and validate the EOC deep learning system to predict the platinum-sensitive of EOC patients through analysis of enhanced magnetic resonance imaging (MRI) images before initial treatment. Ninety-three EOC patients who received platinum-based chemotherapy (>= 4 cycles) and debulking surgery from Sun Yat-sen Memorial Hospital in China from January 2011 to January 2020 were enrolled. We defined platinum-resistant and platinum-refractory patients as platinum-resistant group, and patients who relapsed 6 months or more after initial platinum-base chemotherapy as platinum-sensitive group. Patients were collected and randomly assigned (2:1) to the training and validation cohorts. A deep learning model-Med3D (Resnet 10 version) was first applied to two MRI sequences (T1+C, T2WI) to automatically extract 1024 features of each patient, then established signatures to predict platinum resistance. The area under curve (AUC) of the whole MRI volume signature yielded was 0.97, 0.98 for the training and validation cohorts, respectively, which was better than that with the primary tumor signature (AUC 0.78 and 0.85 in training and validation cohorts, respectively). The whole MRI volume signature sensitivity was 0.96 in identifying platinum sensitivity in the training cohort, and validated in 0.96(95%CI 0.88-1.0) in the validation cohort. The whole MRI volume signature was superior in sensitivity than with MRI primary tumor signature (0.86 and 0.84 [95% CI 0.70-0.98] in training and validation cohort, respectively). The whole MRI volume signature’s specificity was 0.92 and 1 (95% CI 1.0-1.0) in the training and validation cohorts. The primary tumor MRI signature’s specificity was 0.77 and 0.66 (95% CI 0.28-1.0) in the training and validation cohorts. This deep-learning EOC signature achieved a high predictive power for platinum sensitivity, and the signature based on MRI whole volume is better than that on primary tumor area only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小宏完成签到,获得积分10
1秒前
两个榴莲完成签到,获得积分0
1分钟前
Hello应助容若采纳,获得10
1分钟前
千里草完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
隐形曼青应助容若采纳,获得10
2分钟前
斯文败类应助研友_拓跋戾采纳,获得10
2分钟前
2分钟前
bsmark发布了新的文献求助10
2分钟前
3分钟前
爆米花应助bsmark采纳,获得10
3分钟前
不能吃太饱完成签到 ,获得积分10
3分钟前
桐桐应助容若采纳,获得10
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
4分钟前
加贝完成签到 ,获得积分10
4分钟前
毛毛完成签到,获得积分10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
4分钟前
ph完成签到 ,获得积分10
5分钟前
隐形曼青应助容若采纳,获得10
5分钟前
5分钟前
bsmark发布了新的文献求助10
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
5分钟前
6分钟前
爆米花应助容若采纳,获得10
6分钟前
ximitona完成签到,获得积分10
6分钟前
ximitona发布了新的文献求助10
6分钟前
7分钟前
shi发布了新的文献求助10
7分钟前
1762120完成签到,获得积分10
7分钟前
vpothello发布了新的文献求助30
7分钟前
李爱国应助容若采纳,获得10
8分钟前
vpothello完成签到,获得积分10
8分钟前
脑洞疼应助容若采纳,获得10
8分钟前
9分钟前
小马甲应助容若采纳,获得10
9分钟前
星辰大海应助欧皇采纳,获得10
9分钟前
量子星尘发布了新的文献求助100
9分钟前
souther完成签到,获得积分0
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889508
求助须知:如何正确求助?哪些是违规求助? 4173518
关于积分的说明 12952156
捐赠科研通 3934961
什么是DOI,文献DOI怎么找? 2159148
邀请新用户注册赠送积分活动 1177466
关于科研通互助平台的介绍 1082396