Defect detection method for rail surface based on line-structured light

过程(计算) 干扰(通信) 帧(网络) 计算机科学 点云 特征(语言学) 算法 曲面(拓扑) 直线(几何图形) 理论(学习稳定性) 人工智能 工程类 计算机视觉 数学 计算机网络 电信 频道(广播) 语言学 哲学 几何学 机器学习 操作系统
作者
Xiaohui Cao,Wen Xie,Siddiqui Muneeb Ahmed,Cun Rong Li
出处
期刊:Measurement [Elsevier BV]
卷期号:159: 107771-107771 被引量:77
标识
DOI:10.1016/j.measurement.2020.107771
摘要

Based on intensive study on rail surface defect, a rail surface defect inspection scheme is proposed in this paper. With high-precession structured laser sensors, the original data are collected by industrial control computer and transformed into dimensional point cloud pattern. According to analysis of the specific feature of rail surface, a registration method is proposed to re-construct the digital rail surface. To achieve a high-precision detection result, a novel curve fitting model is established and accordingly a dynamic defect detection algorithm is improved to adapt to the successive production process based on the former study. Within the detailed study process, for each single frame data, a judge method is developed for noise elimination and specific feature defect detection. Finally, by studying successive frames of data points (actually cloud points), multiple frames data are dynamically computed to judge if there is a defect area on rail surface. In this paper, to avoid the random influence of minor factors, a probability threshold is introduced to judge defect points in the algorithm, which increases the anti-interference and decreases instability in the defect detection process. To verify the effect of proposed method, an experimental bench is developed in research process. Experimental results show that the detection method has reliable stability and anti-interference possibly influenced by minor factors like oxygen layer detection and characters area detection on rail surface. Compared with traditional two dimensional defect detection methods, the algorithm proposed in this paper is less computationally intensive and more suitable for online detection on rail surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
1秒前
我是老大应助光催化采纳,获得10
2秒前
2秒前
卜娜娜完成签到,获得积分20
3秒前
11发布了新的文献求助10
3秒前
Purring完成签到 ,获得积分10
5秒前
6秒前
7秒前
王梦茹发布了新的文献求助10
8秒前
orixero应助lz4540采纳,获得10
9秒前
屠俊豪完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
Dragonfln发布了新的文献求助30
10秒前
mera完成签到,获得积分10
11秒前
14秒前
14秒前
16秒前
18秒前
shennie发布了新的文献求助10
19秒前
bkagyin应助LLL采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
852应助mratoz采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
Hello应助ggbond采纳,获得10
20秒前
yuan完成签到,获得积分10
20秒前
念念完成签到,获得积分10
20秒前
haoran发布了新的文献求助10
21秒前
YCYycy发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助30
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4666380
求助须知:如何正确求助?哪些是违规求助? 4047039
关于积分的说明 12517661
捐赠科研通 3739613
什么是DOI,文献DOI怎么找? 2065274
邀请新用户注册赠送积分活动 1094855
科研通“疑难数据库(出版商)”最低求助积分说明 975190