亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved geographical origin discrimination for tea using ICP‐MS and ICP‐OES techniques in combination with chemometric approach

线性判别分析 主成分分析 感应耦合等离子体 化学计量学 电感耦合等离子体质谱法 等离子体原子发射光谱 偏最小二乘回归 质谱法 模式识别(心理学) 层次聚类 人工智能 化学 分析化学(期刊) 人工神经网络 聚类分析 数学 统计 计算机科学 色谱法 物理 等离子体 量子力学
作者
Honglin Liu,Yi‐tao Zeng,Xin Zhao,Huarong Tong
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:100 (8): 3507-3516 被引量:39
标识
DOI:10.1002/jsfa.10392
摘要

BACKGROUND There is an urgent need to strengthen the testing and certification of geographically iconic foods, as well as to use discriminatory science and technology for their regulation and verification. Multi-element and stable isotope analyses were combined to provide a new chemometric approach for improving the discrimination tea samples from different geographical origins. Different stoichiometric methods [principal component analysis (PCA), hierarchical cluster analysis (HCA), partial least squares-discriminant analysis (PLS-DA), back propagation based artificial neural network (BP-ANN) and linear discriminant analysis (LDA)] were used to demonstrate this discrimination approach using Yongchuanxiuya tea samples in an experimental test. RESULTS Multi-element and stable isotope analyses of tea samples using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry easily distinguished the geographical origins. However, the clustering ability of the two unsupervised learning methods (PCA and HCA) were worse compared to that of the three supervised learning methods (PLS-DA, BP-ANN and LDA). BP-ANN and LDA, with 100% recognition and prediction abilities, were found to be better than PLS-DA. 86Sr and 112Cd were the markers enabling the successful classification of tea samples according to their geographical origins. Under the validation by 'blind' dataset, the prediction accuracies of the BP-ANN and LDA methods were all greater than 90%. The LDA method showed the best performance, with an accuracy of 100%. CONCLUSION In summary, determination of mineral elements and stable isotopes using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry techniques coupled with chemometric methods, especially the LDA method, is a good approach for improving the authentication of a diverse range of tea. The present study contributes toward generalizing the use of fingerprinting mineral elements and stable isotopes as a promising tool for testing the geographic roots of tea and food worldwide. © 2020 Society of Chemical Industry
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
13秒前
子阅发布了新的文献求助10
20秒前
林夕完成签到 ,获得积分10
1分钟前
水的很厉害完成签到,获得积分10
1分钟前
1分钟前
子阅发布了新的文献求助10
1分钟前
bc驳回了诗轩应助
2分钟前
2分钟前
爱桃子发布了新的文献求助10
2分钟前
bc完成签到,获得积分0
2分钟前
3分钟前
喜看财经发布了新的文献求助10
3分钟前
3分钟前
DrS发布了新的文献求助10
4分钟前
DrS完成签到,获得积分10
4分钟前
4分钟前
4分钟前
居居侠完成签到 ,获得积分10
5分钟前
胖小羊完成签到 ,获得积分10
6分钟前
Anewone发布了新的文献求助30
6分钟前
6分钟前
洁净的钢笔完成签到 ,获得积分10
6分钟前
不割包皮重口裂奇完成签到,获得积分10
7分钟前
心灵美语兰完成签到 ,获得积分10
7分钟前
萝卜猪完成签到,获得积分10
7分钟前
AmyHu完成签到,获得积分10
7分钟前
7分钟前
zll发布了新的文献求助10
8分钟前
一路微笑完成签到,获得积分10
8分钟前
叶远望完成签到 ,获得积分10
8分钟前
crown完成签到,获得积分20
8分钟前
科研通AI5应助crown采纳,获得30
8分钟前
8分钟前
8分钟前
任性的皮皮虾完成签到,获得积分10
9分钟前
柔弱友菱完成签到,获得积分10
9分钟前
白菜完成签到 ,获得积分10
9分钟前
10分钟前
瓦力完成签到 ,获得积分10
10分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808127
求助须知:如何正确求助?哪些是违规求助? 3352735
关于积分的说明 10360188
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810367
科研通“疑难数据库(出版商)”最低求助积分说明 766058