组织工程
细胞培养
纳米技术
细胞生物学
灌注
生物医学工程
工程类
材料科学
内科学
生物
医学
遗传学
作者
Zihou Wei,Tao Sun,Shingo Shimoda,Zhe Chen,Xie Chen,Huaping Wang,Qiang Huang,Toshio Fukuda,Qing Shi
出处
期刊:Lab on a Chip
[Royal Society of Chemistry]
日期:2022-01-01
卷期号:22 (5): 1006-1017
被引量:17
摘要
Collagen provides a promising environment for 3D nerve cell culture; however, the function of perfusion culture and cell-growth guidance is difficult to integrate into such an environment to promote cell growth. In this paper, we develop a bio-inspired design method for constructing a perfusion culture platform for guided nerve cell growth and differentiation in collagen. Based on the anatomical structure of peripheral neural tissue, a biomimetic porous structure (BPS) is fabricated by two-photon polymerization of IP-Visio. The micro-capillary effect is then utilized to facilitate the self-assembly of cell encapsulated collagen into the BPS. 3D perfusion culture can be rapidly implemented by inserting the cell-filled BPS into a pipette tip connected with syringe pumps. Furthermore, we investigate the nerve cell behavior in the BPS. 7-channel aligned cellular structures surrounded with a Schwann cell layer can be stably formed after a long-time perfusion culture. Differentiation of PC12 cells and mouse neural stem cells shows 3D neurite outgrowth alignment and elongation in collagen. The calcium activities of differentiated PC12 cells are visualized for confirming the preliminary formation of cell function. These results demonstrate that the proposed bio-inspired 3D cell culture platform with the advantages of miniaturization, structure complexity and perfusion has great potential for future application in the study of nerve regeneration and drug screening.
科研通智能强力驱动
Strongly Powered by AbleSci AI