清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer

三阴性乳腺癌 乳腺癌 生殖系 种系突变 计算生物学 癌症 医学 癌症研究 生物信息学 肿瘤科 内科学 生物 突变 基因 遗传学
作者
Shen Zhao,Chaoyang Yan,Hong Lv,Jingcheng Yang,Chao You,Ziang Li,Ding Ma,Yi Xiao,Jia Hu,Wentao Yang,Yi‐Zhou Jiang,Jun Xu,Zhi‐Ming Shao
出处
期刊:Fundamental research [Elsevier]
卷期号:4 (3): 678-689 被引量:17
标识
DOI:10.1016/j.fmre.2022.06.008
摘要

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N=425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images (WSIs). The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P<0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N=143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lin123完成签到 ,获得积分10
18秒前
ZHANG完成签到 ,获得积分10
21秒前
Thunnus001完成签到 ,获得积分10
26秒前
深情安青应助科研通管家采纳,获得10
39秒前
自然函完成签到 ,获得积分10
1分钟前
poki完成签到 ,获得积分10
1分钟前
科研欢完成签到 ,获得积分10
1分钟前
juliar完成签到 ,获得积分10
1分钟前
简奥斯汀完成签到 ,获得积分10
2分钟前
cgs完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xiaowangwang完成签到 ,获得积分10
2分钟前
CodeCraft应助gunright采纳,获得10
3分钟前
义气的惜霜完成签到,获得积分10
3分钟前
田様应助Vu1nerable采纳,获得10
3分钟前
zzhui完成签到,获得积分10
3分钟前
Orange应助我亦化身东海去采纳,获得10
3分钟前
冰凌心恋完成签到,获得积分10
3分钟前
彗星入梦完成签到 ,获得积分10
4分钟前
dywen完成签到,获得积分10
4分钟前
自然的含蕾完成签到 ,获得积分0
4分钟前
creep2020完成签到,获得积分10
4分钟前
4分钟前
山亭应助科研通管家采纳,获得20
4分钟前
4分钟前
Orange应助勤劳绍辉采纳,获得10
4分钟前
可爱沛蓝完成签到 ,获得积分10
5分钟前
星际舟完成签到,获得积分10
5分钟前
5分钟前
AiQi完成签到 ,获得积分10
5分钟前
gunright发布了新的文献求助10
5分钟前
6分钟前
善学以致用应助gunright采纳,获得10
6分钟前
6分钟前
6分钟前
zzmyyds发布了新的文献求助10
6分钟前
Vu1nerable发布了新的文献求助10
6分钟前
Febrine0502完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357674
求助须知:如何正确求助?哪些是违规求助? 4488989
关于积分的说明 13972772
捐赠科研通 4390358
什么是DOI,文献DOI怎么找? 2412058
邀请新用户注册赠送积分活动 1404600
关于科研通互助平台的介绍 1378989