Benchmarking Machine Learning Descriptors for Crystals

标杆管理 人工智能 计算机科学 代表(政治) 水准点(测量) 一套 机器学习 Crystal(编程语言) 卷积神经网络 模式识别(心理学) 地理 程序设计语言 历史 业务 法学 政治学 政治 营销 考古 大地测量学
作者
Aditya Sonpal,Mohammad Atif Faiz Afzal,Yuling An,Anand Chandrasekaran,Mathew D. Halls
出处
期刊:Acs Symposium Series 卷期号:: 111-126
标识
DOI:10.1021/bk-2022-1416.ch006
摘要

The success of machine learning (ML) in materials design and innovation largely hinges on the quality and comprehensiveness of the representation of atoms, molecules, and materials as features. When these features are represented in numerical or vector form, they are known as descriptors. The quality of these descriptors is assessed by their ability to comprehensively capture the physics of chemical and materials systems. Crystal systems are at the heart of materials science, and their periodic and complex structure poses a unique challenge for feature representation. In this study, we benchmark descriptors from the matminer library, the smooth overlap of atomic positions (SOAP) descriptors as implemented in Schrödinger’s Materials Science Suite (MSS), and crystal graph convolutional neural networks (CGCNN) for prediction of three different materials properties. These include the bulk modulus of semiconductors, heat of formation of perovskites, and CO2 adsorption in metal-organic frameworks (MOFs). In the process, we evaluate and compare the performance of these descriptors in terms of the predictive performance of the ML algorithm, ease of use, time, memory, and data intensiveness. In addition, we illuminate the strengths and weaknesses of each of these descriptors along with their cost-benefit trade-off. This benchmarking study gives insights into what descriptors to use for different types and sizes of crystals and provides end-to-end examples of ML pipelines for crystal systems. This is a good starting point for further exploratory ML studies, especially for MOFs, which have environmental benefits and are hitherto less explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangliangfu完成签到 ,获得积分10
1秒前
4秒前
4秒前
kkk完成签到 ,获得积分10
5秒前
5秒前
机灵的煎蛋完成签到,获得积分10
6秒前
laohu发布了新的文献求助30
7秒前
伶俐的星月完成签到,获得积分10
8秒前
可口可乐完成签到,获得积分10
13秒前
xiaoming完成签到,获得积分10
13秒前
15秒前
egoistMM完成签到,获得积分10
17秒前
17秒前
18秒前
lylyspeechless完成签到,获得积分10
19秒前
sochiyuen发布了新的文献求助10
20秒前
JY'完成签到,获得积分10
22秒前
小马甲应助科研通管家采纳,获得10
23秒前
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得100
23秒前
pluto应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
24秒前
24秒前
CC应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得30
24秒前
orixero应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
25秒前
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4766001
求助须知:如何正确求助?哪些是违规求助? 4103814
关于积分的说明 12695474
捐赠科研通 3821343
什么是DOI,文献DOI怎么找? 2109140
邀请新用户注册赠送积分活动 1133631
关于科研通互助平台的介绍 1014213