The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study

医学 队列 Lasso(编程语言) 特征(语言学) 神经组阅片室 医学物理学 磁共振成像 支持向量机 人工智能 机器学习 放射科 内科学 神经学 计算机科学 万维网 哲学 精神科 语言学
作者
Yixin Wang,Jinwei Lang,Joey Zhaoyu Zuo,Yaqin Dong,Zongtao Hu,Xiuli Xu,Yongkang Zhang,Qinjie Wang,Lizhuang Yang,Stephen T.C. Wong,Hongzhi Wang,Hai Li
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (12): 8737-8747 被引量:42
标识
DOI:10.1007/s00330-022-08887-0
摘要

ObjectiveTo develop and validate a pretreatment magnetic resonance imaging (MRI)–based radiomic-clinical model to assess the treatment response of whole-brain radiotherapy (WBRT) by using SHapley Additive exPlanations (SHAP), which is derived from game theory, and can explain the output of different machine learning models.MethodsWe retrospectively enrolled 228 patients with brain metastases from two medical centers (184 in the training cohort and 44 in the validation cohort). Treatment responses of patients were categorized as a non-responding group vs. a responding group according to the Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria. For each tumor, 960 features were extracted from the MRI sequence. The least absolute shrinkage and selection operator (LASSO) was used for feature selection. A support vector machine (SVM) model incorporating clinical factors and radiomic features wase used to construct the radiomic-clinical model. SHAP method explained the SVM model by prioritizing the importance of features, in terms of assessment contribution.ResultsThree radiomic features and three clinical factors were identified to build the model. Radiomic-clinical model yielded AUCs of 0.928 (95%CI 0.901–0.949) and 0.851 (95%CI 0.816–0.886) for assessing the treatment response in the training cohort and validation cohort, respectively. SHAP summary plot illustrated the feature’s value affected the feature’s impact attributed to model, and SHAP force plot showed the integration of features’ impact attributed to individual response.ConclusionThe radiomic-clinical model with the SHAP method can be useful for assessing the treatment response of WBRT and may assist clinicians in directing personalized WBRT strategies in an understandable manner.Key Points • Radiomic-clinical model can be useful for assessing the treatment response of WBRT. • SHAP could explain and visualize radiomic-clinical machine learning model in a clinician-friendly way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助秋子采纳,获得10
1秒前
3秒前
龙牙完成签到,获得积分10
4秒前
5秒前
天侠客完成签到,获得积分10
6秒前
6秒前
7秒前
十文字发布了新的文献求助10
9秒前
杨冰发布了新的文献求助10
10秒前
10秒前
11秒前
WYN发布了新的文献求助10
12秒前
12秒前
夏下下完成签到 ,获得积分10
12秒前
qiao应助科研通管家采纳,获得50
13秒前
HEIKU应助科研通管家采纳,获得20
13秒前
13秒前
HEAR应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
科研通AI5应助十文字采纳,获得10
13秒前
15秒前
苹果诗筠发布了新的文献求助10
16秒前
南宫映榕发布了新的文献求助30
16秒前
JWonder发布了新的文献求助10
18秒前
strug783发布了新的文献求助10
19秒前
十文字完成签到,获得积分10
19秒前
20秒前
20秒前
玛卡巴卡的小推车完成签到,获得积分10
21秒前
22秒前
科研通AI5应助zzj-zjut采纳,获得10
22秒前
22秒前
JWonder完成签到,获得积分10
23秒前
小白发布了新的文献求助10
25秒前
26秒前
jakeyjakey发布了新的文献求助10
26秒前
彭于晏应助Lgenius采纳,获得10
27秒前
小二郎应助复杂静竹采纳,获得10
27秒前
28秒前
板凳完成签到 ,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780330
求助须知:如何正确求助?哪些是违规求助? 3325604
关于积分的说明 10223724
捐赠科研通 3040799
什么是DOI,文献DOI怎么找? 1669004
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648