医学
队列
Lasso(编程语言)
特征(语言学)
神经组阅片室
医学物理学
磁共振成像
支持向量机
人工智能
机器学习
放射科
内科学
神经学
计算机科学
万维网
哲学
精神科
语言学
作者
Yixin Wang,Jinwei Lang,Joey Zhaoyu Zuo,Yaqin Dong,Zongtao Hu,Xiuli Xu,Yongkang Zhang,Qinjie Wang,Lizhuang Yang,Stephen T.C. Wong,Hongzhi Wang,Hai Li
出处
期刊:European Radiology
[Springer Science+Business Media]
日期:2022-06-09
卷期号:32 (12): 8737-8747
被引量:42
标识
DOI:10.1007/s00330-022-08887-0
摘要
ObjectiveTo develop and validate a pretreatment magnetic resonance imaging (MRI)–based radiomic-clinical model to assess the treatment response of whole-brain radiotherapy (WBRT) by using SHapley Additive exPlanations (SHAP), which is derived from game theory, and can explain the output of different machine learning models.MethodsWe retrospectively enrolled 228 patients with brain metastases from two medical centers (184 in the training cohort and 44 in the validation cohort). Treatment responses of patients were categorized as a non-responding group vs. a responding group according to the Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria. For each tumor, 960 features were extracted from the MRI sequence. The least absolute shrinkage and selection operator (LASSO) was used for feature selection. A support vector machine (SVM) model incorporating clinical factors and radiomic features wase used to construct the radiomic-clinical model. SHAP method explained the SVM model by prioritizing the importance of features, in terms of assessment contribution.ResultsThree radiomic features and three clinical factors were identified to build the model. Radiomic-clinical model yielded AUCs of 0.928 (95%CI 0.901–0.949) and 0.851 (95%CI 0.816–0.886) for assessing the treatment response in the training cohort and validation cohort, respectively. SHAP summary plot illustrated the feature’s value affected the feature’s impact attributed to model, and SHAP force plot showed the integration of features’ impact attributed to individual response.ConclusionThe radiomic-clinical model with the SHAP method can be useful for assessing the treatment response of WBRT and may assist clinicians in directing personalized WBRT strategies in an understandable manner.Key Points • Radiomic-clinical model can be useful for assessing the treatment response of WBRT. • SHAP could explain and visualize radiomic-clinical machine learning model in a clinician-friendly way.
科研通智能强力驱动
Strongly Powered by AbleSci AI