Single-cell eQTL models reveal dynamic T cell state dependence of disease loci

表达数量性状基因座 生物 电池类型 细胞 背景(考古学) 基因 基因表达调控 遗传学 计算生物学 单核苷酸多态性 基因型 古生物学
作者
Aparna Nathan,Samira Asgari,Kazuyoshi Ishigaki,Cristian Valencia,Tiffany Amariuta,Yang Luo,Jessica I. Beynor,Yuriy Baglaenko,Sara Suliman,Alkes L. Price,Leonid Lecca,Megan Murray,D. Branch Moody,Soumya Raychaudhuri
出处
期刊:Nature [Springer Nature]
卷期号:606 (7912): 120-128 被引量:214
标识
DOI:10.1038/s41586-022-04713-1
摘要

Non-coding genetic variants may cause disease by modulating gene expression. However, identifying these expression quantitative trait loci (eQTLs) is complicated by differences in gene regulation across fluid functional cell states within cell types. These states-for example, neurotransmitter-driven programs in astrocytes or perivascular fibroblast differentiation-are obscured in eQTL studies that aggregate cells1,2. Here we modelled eQTLs at single-cell resolution in one complex cell type: memory T cells. Using more than 500,000 unstimulated memory T cells from 259 Peruvian individuals, we show that around one-third of 6,511 cis-eQTLs had effects that were mediated by continuous multimodally defined cell states, such as cytotoxicity and regulatory capacity. In some loci, independent eQTL variants had opposing cell-state relationships. Autoimmune variants were enriched in cell-state-dependent eQTLs, including risk variants for rheumatoid arthritis near ORMDL3 and CTLA4; this indicates that cell-state context is crucial to understanding potential eQTL pathogenicity. Moreover, continuous cell states explained more variation in eQTLs than did conventional discrete categories, such as CD4+ versus CD8+, suggesting that modelling eQTLs and cell states at single-cell resolution can expand insight into gene regulation in functionally heterogeneous cell types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放的匕完成签到,获得积分10
刚刚
长琴思顾发布了新的文献求助10
刚刚
搜集达人应助komorebi采纳,获得10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
Starwalker应助阿梦采纳,获得10
3秒前
3秒前
肖肖肖完成签到 ,获得积分10
3秒前
小康发布了新的文献求助10
4秒前
Get完成签到 ,获得积分10
5秒前
mumu完成签到,获得积分10
5秒前
xxxyuxi发布了新的文献求助10
5秒前
5秒前
科研小白发布了新的文献求助10
7秒前
9秒前
Criminology34应助刘震采纳,获得30
9秒前
玖玖发布了新的文献求助10
11秒前
陌路完成签到,获得积分10
11秒前
小李完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
太阳XIX完成签到,获得积分10
15秒前
16秒前
Owen应助沈three采纳,获得10
17秒前
17秒前
17秒前
18秒前
勤劳手机发布了新的文献求助10
19秒前
ll完成签到 ,获得积分10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
mawei发布了新的文献求助10
21秒前
21秒前
22秒前
maun222发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785163
求助须知:如何正确求助?哪些是违规求助? 5686456
关于积分的说明 15466952
捐赠科研通 4914293
什么是DOI,文献DOI怎么找? 2645133
邀请新用户注册赠送积分活动 1592960
关于科研通互助平台的介绍 1547317