Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning

群体行为 纳米机器人学 计算机科学 群机器人 群体智能 运动规划 可重构性 人工智能 实时计算 粒子群优化 分布式计算 机器人 机器学习 电信
作者
Lidong Yang,Jialin Jiang,Xiaojie Gao,Qinglong Wang,Qi Dou,Li Zhang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (5): 480-493 被引量:136
标识
DOI:10.1038/s42256-022-00482-8
摘要

Navigating a large swarm of micro-/nanorobots is critical for potential targeted delivery/therapy applications owing to the limited volume/function of a single microrobot, and microrobot swarms with distribution reconfigurability can adapt to environments during navigation. However, current microrobot swarms lack the intelligent behaviour to autonomously adjust their distribution and motion according to environmental change. Such autonomous navigation is challenging, and requires real-time appropriate decision-making capability of the swarm for unknown and unstructured environments. Here, to tackle this issue, we propose a framework that defines different autonomy levels for environment-adaptive microrobot swarm navigation and designs corresponding system components for each level. To realize high autonomy levels, real-time autonomous distribution planning is a key capability for the swarm, regarding which we show that deep learning is an enabling approach that allows the microrobot swarm to learn optimal distributions in extensive unstructured environmental morphologies. For real-world demonstration, we study the reconfigurable magnetic nanoparticle swarm and experimentally demonstrate autonomous swarm navigation for targeted delivery and cargo transport in environments with channels or obstacles. This work could introduce computational intelligence to micro-/nanorobot swarms, enabling them to autonomously make appropriate decisions during navigation in unstructured environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssstitch完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
闫晓丽发布了新的文献求助10
5秒前
Akim应助SEM小菜鸡采纳,获得10
6秒前
顾矜应助小城故事和冰雨采纳,获得10
7秒前
丢丢银发布了新的文献求助10
9秒前
jianhan发布了新的文献求助10
9秒前
小破网完成签到 ,获得积分0
10秒前
天天快乐应助李建芳采纳,获得10
14秒前
16秒前
qiao应助木染采纳,获得10
16秒前
小杨发布了新的文献求助10
17秒前
眯眯眼的代容完成签到,获得积分10
18秒前
19秒前
20秒前
缥缈纲完成签到,获得积分10
21秒前
慕青应助闫晓丽采纳,获得10
21秒前
小小王完成签到 ,获得积分10
22秒前
24秒前
科研通AI5应助hi采纳,获得30
26秒前
徐若楠发布了新的文献求助20
27秒前
28秒前
HEIKU应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
HEIKU应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
HEIKU应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
HEIKU应助科研通管家采纳,获得10
29秒前
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
29秒前
无花果应助科研通管家采纳,获得10
29秒前
小杨发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777008
求助须知:如何正确求助?哪些是违规求助? 3322389
关于积分的说明 10210090
捐赠科研通 3037746
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797711
科研通“疑难数据库(出版商)”最低求助积分说明 758040