膜
石墨氮化碳
材料科学
电导率
离子交换
氧化物
亚苯基
氮化物
电化学
化学工程
复合数
离子
无机化学
电极
纳米技术
复合材料
化学
聚合物
催化作用
有机化学
物理化学
图层(电子)
生物化学
光催化
工程类
冶金
作者
Kyu Ha Lee,Ji Young Chu,Ae Rhan Kim,Dong Jin Yoo
标识
DOI:10.1016/j.memsci.2022.120384
摘要
Here, we present a series of organic-inorganic composite membranes using graphitic carbon nitride (gC3N4) derivatives (porous (p-) gC3N4) and F-doped porous (F-p-) gC3N4) to improve the electrochemical properties and dimensional stability for anion exchange membranes (AEMs). The introduction of F-p-gC3N4 onto a quaternized poly(phenylene oxide) (QPPO) matrix induced the expansion of the ion channel by promoting nanophase separation, and the composite membranes possess high ion conductivity (>142.1 mS cm−1 at 90 °C, i.e., 1.75 times as high as the pristine membrane) and suitable alkaline durability (>74% ion conductivity in 1 M KOH at 80 °C for 30 days) with enhanced dimensional change. Importantly, H2-O2 fuel cell performance of QPPO/F-p-gC3N4-0.5 reached a maximum peak power density of 286.2 mW cm−2 at 60 °C. In addition, the QPPO/F-p-gC3N4-0.5-based membrane electrode assembly can be operated under 0.15 A cm−2 current density at 60 °C for 100 h. Thus, this strategy could be suitable for future work on AEM applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI