Discrimination between non-functioning pituitary adenomas and hypophysitis using machine learning methods based on magnetic resonance imaging‑derived texture features

人工智能 机器学习 磁共振成像 医学 垂体炎 相关性 支持向量机 计算机科学 算法 混淆 模式识别(心理学)
作者
Serdar Sahin,Gokcen Yildiz,Seda Hanife Oguz,Orkun Civan,Ebru Cicek,Emre Durcan,Nil Comunoglu,Hande Mefkure Ozkaya,Aysim Buge Oz,Figen Soylemezoglu,Kader Karli Oguz,Selçuk Dagdelen,Tomris Erbas,Osman Kizilkilic,Pinar Kadioglu
出处
期刊:Pituitary [Springer Science+Business Media]
标识
DOI:10.1007/s11102-022-01213-3
摘要

Hypophysitis is a heterogeneous condition that includes inflammation of the pituitary gland and infundibulum, and it can cause symptoms related to mass effects and hormonal deficiencies. We aimed to evaluate the potential role of machine learning methods in differentiating hypophysitis from non-functioning pituitary adenomas.The radiomic parameters obtained from T1A-C images were used. Among the radiomic parameters, parameters capable of distinguishing between hypophysitis and non-functioning pituitary adenomas were selected. In order to avoid the effects of confounding factors and to improve the performance of the classifiers, parameters with high correlation with each other were eliminated. Machine learning algorithms were performed with the combination of gray-level run-length matrix-low gray level run emphasis, gray-level co-occurrence matrix-correlation, and gray-level co-occurrence entropy.A total of 34 patients were included, 17 of whom had hypophysitis and 17 had non-functioning pituitary adenomas. Among the 38 radiomics parameters obtained from post-contrast T1-weighted images, 10 tissue features that could differentiate the lesions were selected. Machine learning algorithms were performed using three selected parameters; gray level run length matrix-low gray level run emphasis, gray-level co-occurrence matrix-correlation, and gray level co-occurrence entropy. Error matrices were calculated by using the machine learning algorithm and it was seen that support vector machines showed the best performance in distinguishing the two lesion types.Our analysis reported that support vector machines showed the best performance in distinguishing hypophysitis from non-functioning pituitary adenomas, emphasizing the importance of machine learning in differentiating the two lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白名单完成签到,获得积分10
刚刚
orixero应助清水采纳,获得10
1秒前
娇娇大王发布了新的文献求助10
1秒前
一只想做科研的狗完成签到,获得积分10
1秒前
天天飞人完成签到,获得积分10
1秒前
2秒前
淡然的宛秋完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
内向雨南完成签到,获得积分10
5秒前
内向雨南发布了新的文献求助10
7秒前
大力梦菲发布了新的文献求助30
9秒前
9秒前
Lee发布了新的文献求助10
9秒前
Owen应助哈理老萝卜采纳,获得10
10秒前
瑜瑜发布了新的文献求助10
10秒前
和风发布了新的文献求助10
10秒前
11秒前
14秒前
cccttt发布了新的文献求助10
14秒前
LEE123完成签到,获得积分10
14秒前
清水发布了新的文献求助10
15秒前
许大脚完成签到,获得积分10
19秒前
20秒前
酷波er应助雨夜聆风采纳,获得10
22秒前
果子完成签到,获得积分10
25秒前
25秒前
慕青应助zxh采纳,获得10
26秒前
26秒前
soapffz完成签到,获得积分10
27秒前
ayue发布了新的文献求助30
28秒前
Lucifer发布了新的文献求助10
28秒前
CipherSage应助噜噜晓采纳,获得10
30秒前
义气的丹妗完成签到,获得积分20
30秒前
归尘发布了新的文献求助10
30秒前
Guo1020181发布了新的文献求助30
31秒前
31秒前
瑜瑜完成签到,获得积分10
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354951
关于积分的说明 10373613
捐赠科研通 3071505
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811324
科研通“疑难数据库(出版商)”最低求助积分说明 766616