Multivariate genome-wide association study models to improve prediction of CROHN’S disease risk and identification of potential novel variants

单变量 全基因组关联研究 多元统计 Lasso(编程语言) 单核苷酸多态性 随机森林 遗传关联 多元分析 计算生物学 生物
作者
Debora Garza-Hernandez,Karol Estrada,Victor Trevino
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:: 105398-105398
标识
DOI:10.1016/j.compbiomed.2022.105398
摘要

Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) that affects the gastrointestinal tract with diverse symptoms. At present, genome-wide association studies (GWAS) has discovered more than 140 genetic loci associated with CD from several datasets. Using the usual univariate GWAS methods, researchers have discovered common variants with small effects. Univariate methods assume independence among the variants that miss subtle combinatorial signals. Multivariate approaches have improved risk prediction and have complemented univariate methods for elucidating the etiology of complex traits and potential novel associations. However, the current multivariate models for CD have been assessed for three datasets (published from 2006 to 2008) under unrelated methodological settings showing a broad performance spectrum. Notably, these multivariate studies do not analyze potential novel variants. Here, we aimed to perform a robust multivariate analysis of a CD dataset different from the one commonly used, and we used the information yielded by the models to identify whether the generated models could provide additional information about the potential novel variants of CD. Therefore, we compared different multivariate methods and models, LASSO (least absolute shrinkage and selection operator), XGBoost, random forest (RF), Bootstrap stage-wise model selection (BSWiMS), and LDpred, using a strict random subsampling approach to predict the CD risk using a recent GWAS dataset, United Kingdom IBD IBD Genetics Consortium (UKIBDGC), made available in 2017, that had not been used for CD prediction studies. In addition, we assessed the effect of common strategies by increasing and decreasing the number of single-nucleotide polymorphism (SNP) markers (using genotype imputation and linkage disequilibrium (LD)–clumping). We found that the LDpred model without any imputation was the best model among all the tested models for predicting the CD risk (area under the receiver operating characteristic curve (AUROC) = 0.667 ± 0.024) in this dataset. We validated the best models using a second dataset (National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) IBD Genetics Consortium, which was previously used in CD prediction studies) in which LDpred was also the best method with a similar performance (AUROC = 0.634 ± 0.009). Based on the importance of the variants yielded by the multivariate models, we identified an unnoticed region within chromosome 6, tagged by SNP rs4945943; this region was close to the gene MARCKS, which appeared to contribute to CD risk. This research is the first multivariate prediction analysis applied to the UKIBDGC dataset. Our robust multivariate setting analysis enabled us to identify a potential variant that contributed to the CD risk. Multivariate methods are valuable tools for identifying genes that contribute to disease risk. • Multivariate models allow ranking variants, according to their contribution to the disease-risk prediction. • LDpred performed better to predict CD-risk, compared with other multivariate and the common polygenic risk score (PRS) analysis. • The LDpred model without imputation was the best model to predict CD risk (AUROC = 0.667 ± 0.024) in the UKIBDGC dataset. • An unnoticed region was identified, within chr 6 (SNP rs4945943) close to gene MARCKS, likely to contribute to CD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿财关注了科研通微信公众号
刚刚
大模型应助是叶暖晚秋哇采纳,获得10
刚刚
豌豆完成签到,获得积分10
1秒前
橙子完成签到,获得积分10
1秒前
科目三应助烂漫念文采纳,获得30
1秒前
1秒前
难过隶发布了新的文献求助10
2秒前
喜多米430完成签到,获得积分10
3秒前
上进生发布了新的文献求助10
3秒前
科研通AI5应助zzz采纳,获得30
3秒前
4秒前
淬h完成签到,获得积分10
4秒前
4秒前
Gustavo完成签到,获得积分10
4秒前
敬老院N号发布了新的文献求助10
5秒前
123完成签到,获得积分10
6秒前
zhang@发布了新的文献求助10
6秒前
orixero应助浙江嘉兴采纳,获得10
6秒前
冤家Gg完成签到,获得积分10
6秒前
从容乌完成签到 ,获得积分10
7秒前
科研通AI5应助谢升澜采纳,获得10
7秒前
香蕉莫言关注了科研通微信公众号
8秒前
冯侠发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
10秒前
10秒前
moon完成签到,获得积分10
11秒前
11秒前
gao完成签到 ,获得积分10
11秒前
科研通AI5应助ALON采纳,获得10
11秒前
科研通AI5应助《子非鱼》采纳,获得10
11秒前
一只菜鸟完成签到 ,获得积分10
12秒前
12秒前
正直美女完成签到,获得积分10
12秒前
13秒前
yyuu完成签到,获得积分10
13秒前
13秒前
orixero应助zhang@采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809412
求助须知:如何正确求助?哪些是违规求助? 3354019
关于积分的说明 10368252
捐赠科研通 3070280
什么是DOI,文献DOI怎么找? 1686150
邀请新用户注册赠送积分活动 810833
科研通“疑难数据库(出版商)”最低求助积分说明 766384