Automating Coordination Efforts for Reviewing Construction Contracts with Multilabel Text Classification

相关性(法律) 计算机科学 公制(单位) 背景(考古学) 施工合同 合同管理 过程(计算) 人工智能 知识管理 机器学习 运营管理 业务 工程类 程序设计语言 古生物学 营销 政治学 法学 生物
作者
Ali Bedii Candaş,Onur Behzat Tokdemir
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:148 (6) 被引量:15
标识
DOI:10.1061/(asce)co.1943-7862.0002275
摘要

Construction projects involve multiple company departments and disciplines. The departments follow certain rules in implementing a project, also referred to as requirements in a construction contract. Current administration practices do not show which discipline or department is related to any requirement in the contracts. Thus, all departments need to review contract requirements but typically only from their perspective and with minimal communication with one another. In addition to the tendency of this manual process to error, time and money are lost in evaluating irrelevant departmental requirements. This study concentrates on one aspect of contract interpretation, coordination of the contract requirement review. Automating a classification of the contract requirements by relevant departments can increase the efficiency of contract reviews. This study proposes a robust approach to automating contract sentence classification by relevance to the company department. The approach comprises both natural language processing (NLP) and supervised machine learning techniques to train an algorithm. Training data are selected from an internationally and widely used standard form of construction contract. Precision metric results as high as 0.952 and recall metric results as high as 0.786 are acquired by support vector classifiers (SVCs). These are considered sufficient within the context of multilabel classification of construction contract sentences for construction professionals to operate without further training. The developed methodology reduces time spent on contract review, reliably and accurately predicts classification of contract sentences for departmental relevance, and also removes the dependence on expert participation in coordination efforts contract review.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rtsxhcj发布了新的文献求助10
刚刚
阿狸关注了科研通微信公众号
刚刚
霍霍完成签到 ,获得积分10
1秒前
1秒前
Johnny完成签到,获得积分10
2秒前
2秒前
尘南浔完成签到 ,获得积分10
2秒前
wanci应助一个小胖子采纳,获得10
4秒前
斑其发布了新的文献求助10
4秒前
文瑶琪发布了新的文献求助10
4秒前
双马尾小男生2完成签到,获得积分10
4秒前
大笨蛋发布了新的文献求助10
5秒前
肚皮完成签到 ,获得积分10
5秒前
不会吹口哨完成签到,获得积分10
5秒前
guojingjing发布了新的文献求助10
6秒前
orixero应助优雅咖啡豆采纳,获得10
7秒前
7秒前
华仔应助慈祥的鱼采纳,获得10
8秒前
8秒前
现代CC完成签到 ,获得积分10
10秒前
双马尾小男生完成签到,获得积分10
11秒前
orixero应助山鬼不识采纳,获得10
11秒前
Damon完成签到 ,获得积分10
12秒前
wanzhitao发布了新的文献求助30
12秒前
三口一头猪完成签到,获得积分10
14秒前
斑其完成签到,获得积分10
15秒前
ggtt940完成签到,获得积分10
16秒前
木木圆发布了新的文献求助80
17秒前
anjun发布了新的文献求助10
18秒前
shyotion发布了新的文献求助10
18秒前
柯一一应助dzy1317采纳,获得10
19秒前
WW完成签到 ,获得积分10
19秒前
22秒前
张西西完成签到 ,获得积分10
23秒前
24秒前
阿狸发布了新的文献求助10
25秒前
科研通AI2S应助哈哈哈采纳,获得10
25秒前
情怀应助ggtt940采纳,获得10
25秒前
李爱国应助obaica采纳,获得10
26秒前
Manchester发布了新的文献求助10
27秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902129
求助须知:如何正确求助?哪些是违规求助? 3446881
关于积分的说明 10846113
捐赠科研通 3172029
什么是DOI,文献DOI怎么找? 1752535
邀请新用户注册赠送积分活动 847337
科研通“疑难数据库(出版商)”最低求助积分说明 789876