Transformer Network-based Reinforcement Learning Method for Power Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM)

强化学习 可扩展性 计算机科学 变压器 解耦(概率) 嵌入 人工智能 工程类 控制工程 电气工程 数据库 电压
作者
Hyunwook Park,Minsu Kim,Seongguk Kim,Keunwoo Kim,Haeyeon Kim,Taein Shin,Keeyoung Son,Boogyo Sim,Subin Kim,Seungtaek Jeong,Chulsoon Hwang,Joungho Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.15722
摘要

In this article, for the first time, we propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM). The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer impedance seen at multiple ports. An attention-based transformer network is implemented to directly parameterize decap optimization policy. The optimality performance is significantly improved since the attention mechanism has powerful expression to explore massive combinatorial space for decap assignments. Moreover, it can capture sequential relationships between the decap assignments. The computing time for optimization is dramatically reduced due to the reusable network on positions of probing ports and decap assignment candidates. This is because the transformer network has a context embedding process to capture meta-features including probing ports positions. In addition, the network is trained with randomly generated data sets. Therefore, without additional training, the trained network can solve new decap optimization problems. The computing time for training and data cost are critically decreased due to the scalability of the network. Thanks to its shared weight property, the network can adapt to a larger scale of problems without additional training. For verification, we compare the results with conventional genetic algorithm (GA), random search (RS), and all the previous RL-based methods. As a result, the proposed method outperforms in all the following aspects: optimality performance, computing time, and data efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
666完成签到 ,获得积分10
2秒前
轻松元绿完成签到 ,获得积分10
3秒前
现代大神发布了新的文献求助10
4秒前
Michelle发布了新的文献求助10
5秒前
6秒前
ocean完成签到,获得积分10
7秒前
小狗说好运来完成签到 ,获得积分10
9秒前
shin发布了新的文献求助10
11秒前
黑子完成签到 ,获得积分10
13秒前
忧虑的静柏完成签到 ,获得积分10
16秒前
归零者碳索者完成签到,获得积分20
18秒前
丝丢皮得完成签到 ,获得积分10
18秒前
Tibbar完成签到 ,获得积分10
21秒前
back you up应助墨月白采纳,获得30
24秒前
HCT完成签到,获得积分10
27秒前
乔杰完成签到 ,获得积分10
28秒前
Zeeki完成签到 ,获得积分10
28秒前
善学以致用应助Michelle采纳,获得10
29秒前
聪慧的娜完成签到 ,获得积分10
29秒前
Raunio完成签到,获得积分10
30秒前
北笙完成签到 ,获得积分10
36秒前
火星上小土豆完成签到 ,获得积分10
37秒前
是小小李哇完成签到 ,获得积分10
38秒前
不朽阳神完成签到,获得积分10
41秒前
海阔天空完成签到,获得积分0
42秒前
熬大夜发布了新的文献求助20
49秒前
不安的松完成签到 ,获得积分10
52秒前
卡卡完成签到,获得积分10
57秒前
啦啦啦完成签到 ,获得积分10
1分钟前
1分钟前
曾经小伙完成签到 ,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
哥哥完成签到,获得积分10
1分钟前
loren313完成签到,获得积分0
1分钟前
JamesPei应助一鸣大人采纳,获得10
1分钟前
1分钟前
烤鸭完成签到 ,获得积分10
1分钟前
Niniiii发布了新的文献求助10
1分钟前
back you up应助科研通管家采纳,获得30
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282126
捐赠科研通 3053566
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468