PoolNet+: Exploring the Potential of Pooling for Salient Object Detection

联营 计算机科学 突出 人工智能 目标检测 模式识别(心理学) 计算机视觉 对象(语法)
作者
Jiangjiang Liu,Qibin Hou,Zhi-Ang Liu,Ming‐Ming Cheng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (1): 887-904 被引量:105
标识
DOI:10.1109/tpami.2021.3140168
摘要

We explore the potential of pooling techniques on the task of salient object detection by expanding its role in convolutional neural networks. In general, two pooling-based modules are proposed. A global guidance module (GGM) is first built based on the bottom-up pathway of the U-shape architecture, which aims to guide the location information of the potential salient objects into layers at different feature levels. A feature aggregation module (FAM) is further designed to seamlessly fuse the coarse-level semantic information with the fine-level features in the top-down pathway. We can progressively refine the high-level semantic features with these two modules and obtain detail enriched saliency maps. Experimental results show that our proposed approach can locate the salient objects more accurately with sharpened details and substantially improve the performance compared with the existing state-of-the-art methods. Besides, our approach is fast and can run at a speed of 53 FPS when processing a 300 ×400 image. To make our approach better applied to mobile applications, we take MobileNetV2 as our backbone and re-tailor the structure of our pooling-based modules. Our mobile version model achieves a running speed of 66 FPS yet still performs better than most existing state-of-the-art methods. To verify the generalization ability of the proposed method, we apply it to the edge detection, RGB-D salient object detection, and camouflaged object detection tasks, and our method achieves better results than the corresponding state-of-the-art methods of these three tasks. Code can be found at http://mmcheng.net/poolnet/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳如烟应助悠悠采纳,获得10
刚刚
6188发布了新的文献求助20
1秒前
中旬日完成签到,获得积分10
2秒前
CAT发布了新的文献求助10
3秒前
情红锐发布了新的文献求助10
4秒前
hyy关注了科研通微信公众号
4秒前
Hcollide完成签到,获得积分10
5秒前
舒心无剑完成签到,获得积分10
5秒前
5秒前
7秒前
桐桐应助猪猪hero采纳,获得10
8秒前
魔幻的寻雪完成签到,获得积分10
8秒前
9秒前
优秀的采蓝完成签到 ,获得积分10
10秒前
科研通AI5应助DrZ采纳,获得10
10秒前
孔乙己完成签到,获得积分10
10秒前
梅子发布了新的文献求助10
11秒前
pqy发布了新的文献求助10
11秒前
12秒前
猪猪hero发布了新的文献求助10
14秒前
14秒前
充电宝应助驰驰采纳,获得10
16秒前
17秒前
lily336699发布了新的文献求助10
18秒前
G浅浅完成签到,获得积分10
18秒前
爆米花应助任侠传采纳,获得10
18秒前
田様应助梅子采纳,获得10
18秒前
Holland完成签到,获得积分10
19秒前
猪猪hero发布了新的文献求助10
20秒前
lizhiqian2024发布了新的文献求助10
21秒前
23秒前
李爱国应助dongxuzhen采纳,获得10
23秒前
24秒前
万能图书馆应助不懂采纳,获得10
25秒前
今后应助lily336699采纳,获得10
27秒前
驰驰发布了新的文献求助10
28秒前
29秒前
米龙完成签到,获得积分10
30秒前
柳如烟应助Bingo06采纳,获得10
31秒前
Erina完成签到 ,获得积分10
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805206
求助须知:如何正确求助?哪些是违规求助? 3350214
关于积分的说明 10347750
捐赠科研通 3066060
什么是DOI,文献DOI怎么找? 1683511
邀请新用户注册赠送积分活动 809039
科研通“疑难数据库(出版商)”最低求助积分说明 765205