The Utility of Mixed Models in Sport Science: A Call for Further Adoption in Longitudinal Data Sets

重复措施设计 联盟 运动员 混合模型 统计 竞赛(生物学) 方差分析 差异(会计) 团体运动 随机效应模型 俱乐部 计量经济学 数学 心理学 物理疗法 医学 经济 会计 内科学 物理 解剖 荟萃分析 生物 生态学 天文
作者
Tim Newans,Phillip Bellinger,Christopher Drovandi,Simon Buxton,Clare Minahan
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:17 (8): 1289-1295 被引量:26
标识
DOI:10.1123/ijspp.2021-0496
摘要

Sport-science research consistently contains repeated measures and imbalanced data sets. This study calls for further adoption of mixed models when analyzing longitudinal sport-science data sets. Mixed models were used to understand whether the level of competition affected the intensity of women's rugby league match play.A total of 472 observations were used to compare the mean speed of female rugby league athletes recorded during club-, state-, and international-level competition. As athletes featured in all 3 levels of competition and there were multiple matches within each competition (ie, repeated measures), the authors demonstrated that mixed models are the appropriate statistical approach for these data.The authors determined that if a repeated-measures analysis of variance (ANOVA) were used for the statistical analysis in the present study, at least 48.7% of the data would have been omitted to meet ANOVA assumptions. Using a mixed model, the authors determined that mean speed recorded during Trans-Tasman Test matches was 73.4 m·min-1, while the mean speeds for National Rugby League Women and State of Origin matches were 77.6 and 81.6 m·min-1, respectively. Random effects of team, athlete, and match all accounted for variations in mean speed, which otherwise could have concealed the main effects of position and level of competition had less flexible ANOVAs been used.These data clearly demonstrate the appropriateness of applying mixed models to typical data sets acquired in the professional sport setting. Mixed models should be more readily used within sport science, especially in observational, longitudinal data sets such as movement pattern analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrZheng发布了新的文献求助10
1秒前
2秒前
4秒前
独行者完成签到,获得积分10
4秒前
4秒前
6秒前
Amy完成签到,获得积分10
7秒前
8秒前
aaaa发布了新的文献求助10
8秒前
虾米完成签到,获得积分10
8秒前
青椒炒蛋发布了新的文献求助10
9秒前
11秒前
CipherSage应助JMchiefEditor采纳,获得10
11秒前
科研通AI5应助狂野世立采纳,获得10
12秒前
12秒前
12秒前
12秒前
陶12345完成签到,获得积分10
13秒前
14秒前
15秒前
研友_8DAv0L发布了新的文献求助10
15秒前
科研通AI5应助小煜哥采纳,获得30
16秒前
chunyan_li应助聪慧的凝海采纳,获得10
16秒前
陶12345发布了新的文献求助10
16秒前
Steven发布了新的文献求助30
17秒前
天天完成签到,获得积分10
17秒前
笨笨芯发布了新的文献求助50
19秒前
19秒前
多情道之完成签到 ,获得积分10
21秒前
aaaa完成签到,获得积分20
22秒前
小二郎应助研友_8DAv0L采纳,获得10
22秒前
23秒前
科研通AI5应助狂野世立采纳,获得10
23秒前
24秒前
25秒前
25秒前
紫薯球完成签到,获得积分10
26秒前
小马甲应助怀瑾握瑜采纳,获得10
26秒前
彭于晏应助Zert采纳,获得10
27秒前
小煜哥发布了新的文献求助30
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783103
求助须知:如何正确求助?哪些是违规求助? 3328427
关于积分的说明 10236544
捐赠科研通 3043550
什么是DOI,文献DOI怎么找? 1670558
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119