Time Series Prediction via Similarity Search: Exploring Invariances, Distance Measures and Ensemble Functions

计算机科学 人工智能 相似性(几何) 机器学习 时间序列 人工神经网络 支持向量机 系列(地层学) 背景(考古学) 数据挖掘 模式识别(心理学) 生物 图像(数学) 古生物学
作者
Antonio Rafael Sabino Parmezan,Vinicius M. A. Souza,Gustavo E. A. P. A. Batista
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 78022-78043
标识
DOI:10.1109/access.2022.3192849
摘要

The rapid advance of scientific research in data mining has led to the adaptation of conventional pattern extraction methods to the context of time series analysis. The forecasting (or prediction) task has been supported mainly by regression algorithms based on artificial neural networks, support vector machines, and k-Nearest Neighbors (kNN). However, some studies provided empirical evidence that similarity-based methods, i.e. variations of kNN, constitute a promising approach compared with more complex predictive models from both machine learning and statistics. Although the scientific community has made great strides in increasing the visibility of these easy-to-fit and impressively accurate algorithms, previous work has failed to recognize the right invariances needed for this task.We propose a novel extension of kNN, namely kNN - Time Series Prediction with Invariances (kNN-TSPI), that differs from the literature by combining techniques to obtain amplitude and offset invariance, complexity invariance, and treatment of trivial matches. Our predictor enables more meaningful matches between reference queries and data subsequences. From a comprehensive evaluation with real-world datasets, we demonstrate that kNN-TSPI is a competitive algorithm against two conventional similarity-based approaches and, most importantly, against 11 popular predictors. To assist future research and provide a better understanding of similarity-based method behaviors, we also explore different settings of kNN-TSPI regarding invariances to distortions in time series, distance measures, complexity-invariant distances, and ensemble functions. Results show that kNN-TSPI stands out for its robustness and stability both concerning the parameter k and the accuracy of the projection horizon trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希希发布了新的文献求助10
1秒前
fffff发布了新的文献求助10
2秒前
小马甲应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
5秒前
Lgenius完成签到,获得积分10
6秒前
端庄梦松发布了新的文献求助10
6秒前
今后应助ibigbird采纳,获得10
7秒前
9秒前
小蘑菇应助CDH采纳,获得10
10秒前
CipherSage应助青栀采纳,获得10
11秒前
橘柚应助fffff采纳,获得10
11秒前
11秒前
屁王完成签到,获得积分10
11秒前
科研通AI5应助大象放冰箱采纳,获得10
14秒前
Boxcc发布了新的文献求助10
15秒前
dddkcjm完成签到,获得积分10
15秒前
15秒前
16秒前
端庄梦松完成签到,获得积分20
17秒前
郭义敏完成签到,获得积分0
18秒前
18秒前
初见完成签到,获得积分10
19秒前
20秒前
ibigbird发布了新的文献求助10
20秒前
小二郎应助兴奋的若菱采纳,获得10
21秒前
21秒前
24秒前
24秒前
25秒前
无所吊谓发布了新的文献求助10
25秒前
26秒前
科研通AI5应助peikyang采纳,获得10
26秒前
Yipou完成签到,获得积分10
27秒前
HOME发布了新的文献求助10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780270
求助须知:如何正确求助?哪些是违规求助? 3325566
关于积分的说明 10223524
捐赠科研通 3040706
什么是DOI,文献DOI怎么找? 1668974
邀请新用户注册赠送积分活动 798936
科研通“疑难数据库(出版商)”最低求助积分说明 758634