已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Time Series Prediction via Similarity Search: Exploring Invariances, Distance Measures and Ensemble Functions

计算机科学 人工智能 相似性(几何) 机器学习 时间序列 人工神经网络 支持向量机 系列(地层学) 背景(考古学) 数据挖掘 模式识别(心理学) 生物 图像(数学) 古生物学
作者
Antonio Rafael Sabino Parmezan,Vinicius M. A. Souza,Gustavo E. A. P. A. Batista
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 78022-78043
标识
DOI:10.1109/access.2022.3192849
摘要

The rapid advance of scientific research in data mining has led to the adaptation of conventional pattern extraction methods to the context of time series analysis. The forecasting (or prediction) task has been supported mainly by regression algorithms based on artificial neural networks, support vector machines, and k-Nearest Neighbors (kNN). However, some studies provided empirical evidence that similarity-based methods, i.e. variations of kNN, constitute a promising approach compared with more complex predictive models from both machine learning and statistics. Although the scientific community has made great strides in increasing the visibility of these easy-to-fit and impressively accurate algorithms, previous work has failed to recognize the right invariances needed for this task.We propose a novel extension of kNN, namely kNN - Time Series Prediction with Invariances (kNN-TSPI), that differs from the literature by combining techniques to obtain amplitude and offset invariance, complexity invariance, and treatment of trivial matches. Our predictor enables more meaningful matches between reference queries and data subsequences. From a comprehensive evaluation with real-world datasets, we demonstrate that kNN-TSPI is a competitive algorithm against two conventional similarity-based approaches and, most importantly, against 11 popular predictors. To assist future research and provide a better understanding of similarity-based method behaviors, we also explore different settings of kNN-TSPI regarding invariances to distortions in time series, distance measures, complexity-invariant distances, and ensemble functions. Results show that kNN-TSPI stands out for its robustness and stability both concerning the parameter k and the accuracy of the projection horizon trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想写文章完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
5秒前
joh发布了新的文献求助10
6秒前
6秒前
长至完成签到,获得积分10
10秒前
wybswz完成签到,获得积分10
14秒前
JD完成签到 ,获得积分10
15秒前
小二郎应助疯狂的红牛采纳,获得10
16秒前
今后应助joh采纳,获得20
19秒前
无聊的朋友完成签到,获得积分20
20秒前
z123完成签到,获得积分10
21秒前
jjjh完成签到 ,获得积分10
25秒前
26秒前
zerowey完成签到 ,获得积分20
27秒前
28秒前
30秒前
30秒前
31秒前
mellow完成签到,获得积分10
33秒前
Aria发布了新的文献求助10
37秒前
烟花应助xhj采纳,获得10
38秒前
45秒前
张立佳完成签到 ,获得积分10
47秒前
sweet雪儿妞妞完成签到 ,获得积分10
48秒前
1122321发布了新的文献求助10
49秒前
许某希完成签到 ,获得积分10
50秒前
小阳看文献完成签到,获得积分10
51秒前
xhj发布了新的文献求助10
51秒前
wjd193完成签到,获得积分20
54秒前
1122321发布了新的文献求助10
55秒前
KAI完成签到 ,获得积分10
55秒前
小二郎应助李剑鸿采纳,获得50
58秒前
剑指东方是为谁应助xhj采纳,获得10
1分钟前
1分钟前
Aria完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
International Relations at LSE: A History of 75 Years 308
Conceptual Metaphor Theory in World Language Education 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927701
求助须知:如何正确求助?哪些是违规求助? 3472431
关于积分的说明 10972478
捐赠科研通 3202259
什么是DOI,文献DOI怎么找? 1769292
邀请新用户注册赠送积分活动 858008
科研通“疑难数据库(出版商)”最低求助积分说明 796258