Detecting how time is subjectively perceived based on event-related potentials (ERPs): a machine learning approach

支持向量机 怪胎范式 脑电图 脑-机接口 随机森林 事件相关电位 人工智能 计算机科学 模式识别(心理学) 感知 逻辑回归 心理学 语音识别 机器学习 神经科学
作者
Hoda Jalalkamali,Amirhossein Tajik,Rashid Hatami,Hossein Nezamabadi‐pour
出处
期刊:International Journal of Neuroscience [Taylor & Francis]
卷期号:134 (4): 372-380 被引量:1
标识
DOI:10.1080/00207454.2022.2103413
摘要

Background and objective: Time perception is essential for the precise performance of many of our activities and the coordination between different modalities. But it is distorted in many diseases and disorders. Event-related potentials (ERP) have long been used to understand better how the human brain perceives time, but machine learning methods have rarely been used to detect a person's time perception from his/her ERPs.Methods: In this study, EEG signals of the individuals were recorded while performing an auditory oddball time discrimination task. After features were extracted from ERPs, data balancing, and feature selection, machine learning models were used to distinguish between the oddball durations of 400 ms and 600 ms from standard durations of 500 ms. ERP results showed that the P3 evoked by the 600 ms oddball stimuli appeared about 200 ms later than that of the 400 ms oddball tones. Classification performance results indicated that support vector machine (SVM) outperformed K-nearest neighbors (KNN), Random Forest, and Logistic regression models.Results: The accuracy of SVM was 91.24, 92.96, and 89.9 for the three used labeling modes, respectively. Another important finding was that most features selected for classification were in the P3 component range, supporting the observed significant effect of duration on the P3. Although all N1, P2, N2, and P3 components contributed to detecting the desired durations.Conclusion: Therefore, results of this study suggest the P3 component as a potential candidate to detect sub-second periods in future researches on brain-computer interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助云泥采纳,获得10
1秒前
2秒前
3秒前
cxt完成签到,获得积分20
3秒前
活泼山雁发布了新的文献求助10
4秒前
1111发布了新的文献求助10
4秒前
5秒前
zho关闭了zho文献求助
7秒前
hying发布了新的文献求助10
7秒前
麦冬完成签到,获得积分20
7秒前
唐落音发布了新的文献求助10
9秒前
科研的牲口完成签到,获得积分10
9秒前
1111完成签到,获得积分10
11秒前
汉堡包应助云泥采纳,获得10
11秒前
勤恳迎梦完成签到,获得积分10
12秒前
Chris完成签到,获得积分10
13秒前
共享精神应助沉静从阳采纳,获得10
13秒前
唐落音完成签到,获得积分10
14秒前
内向莛发布了新的文献求助10
15秒前
袁晨悦完成签到 ,获得积分10
16秒前
丘比特应助dodoqia采纳,获得10
17秒前
硕shuo发布了新的文献求助20
17秒前
zho发布了新的文献求助10
18秒前
18秒前
20秒前
史淼荷发布了新的文献求助10
24秒前
24秒前
25秒前
溫蒂应助云泥采纳,获得10
25秒前
内向莛完成签到,获得积分10
25秒前
27秒前
我是老大应助赵鑫雅采纳,获得10
27秒前
30秒前
ShiRz发布了新的文献求助10
30秒前
麦冬发布了新的文献求助10
31秒前
32秒前
孤独的乐珍关注了科研通微信公众号
33秒前
34秒前
35秒前
十七完成签到 ,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944