Trans-U: Transformer Enhanced U-Net for Medical Image Segmentation

分割 计算机科学 卷积神经网络 图像分割 人工智能 编码器 变压器 尺度空间分割 基于分割的对象分类 地点 模式识别(心理学) 计算机视觉 工程类 电气工程 操作系统 哲学 语言学 电压
作者
Shirong Guo,Shaowei Sheng,Zhikang Lai,Shanhong Chen
标识
DOI:10.1109/cvidliccea56201.2022.9824530
摘要

The growth of healthcare systems, particularly illness diagnosis and treatment planning, requires the segmentation of medical images. U-Net became the basic standard for several medical image segmentation tasks, with great success. Due to the intrinsic locality of convolutional processes, U-Net frequently has constraints in explicitly representing long-range dependence. Transformer, which is built for sequence-to-sequence prediction, has emerged as a viable architecture with an intrinsic global self-attention mechanism, however owing to insufficient low-level information, it may have restricted localization capabilities. In this paper, Trans-U is proposed as an powerful option for medical image segmentation in this research combined with Transformer and U-Net. Transformer utilizes tokenized picture patching from convolutional neural network feature maps as input data in order to extract global context. To achieve exact localization, the decoder upsamples the encoded features, which are subsequently integrated with the high-resolution CNN feature maps. We claim that Transformers can be effective encoders for medical picture segmentation tasks, especially when used with U-Net to recover localized spatial information and improve finer details. Trans-U outperforms many rival approaches in a variety of medical applications, such as multi-organ segmentation and cardiac segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助平安顺遂采纳,获得10
刚刚
孤月杰发布了新的文献求助10
1秒前
和花花完成签到 ,获得积分10
1秒前
研友_nvggxZ发布了新的文献求助10
2秒前
上官若男应助大梦想家采纳,获得20
2秒前
2秒前
3秒前
yang发布了新的文献求助10
3秒前
3秒前
3秒前
手机打卡开不开完成签到,获得积分10
3秒前
Owen应助Chauncy采纳,获得10
5秒前
5秒前
Yiping发布了新的文献求助10
5秒前
7秒前
miugmiug发布了新的文献求助10
7秒前
7秒前
mkljl完成签到 ,获得积分10
8秒前
8秒前
joeking发布了新的文献求助30
8秒前
11秒前
平安顺遂发布了新的文献求助10
12秒前
孤月杰完成签到,获得积分10
12秒前
豌豆发布了新的文献求助10
13秒前
天凉王破完成签到 ,获得积分10
14秒前
完美世界应助gao采纳,获得10
15秒前
15秒前
cdercder应助花小研采纳,获得20
16秒前
在水一方应助耍酷激光豆采纳,获得10
16秒前
xuanxuan完成签到 ,获得积分10
16秒前
17秒前
17秒前
陈雷应助淡淡的向雁采纳,获得10
18秒前
18秒前
杏游完成签到,获得积分10
19秒前
拉布拉卡完成签到,获得积分10
19秒前
20秒前
善学以致用应助huihui采纳,获得10
20秒前
难过的俊驰完成签到,获得积分10
20秒前
20秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797414
求助须知:如何正确求助?哪些是违规求助? 3342822
关于积分的说明 10313258
捐赠科研通 3059540
什么是DOI,文献DOI怎么找? 1678917
邀请新用户注册赠送积分活动 806281
科研通“疑难数据库(出版商)”最低求助积分说明 763043