Methodological quality of machine learning-based quantitative imaging analysis studies in esophageal cancer: a systematic review of clinical outcome prediction after concurrent chemoradiotherapy

医学 医学物理学 机器学习 梅德林 引用 食管癌 系统回顾 批判性评价 人工智能 质量(理念) 临床试验 癌症 计算机科学 内科学 病理 替代医学 万维网 哲学 法学 认识论 政治学
作者
Zhenwei Shi,Zhen Zhang,Zaiyi Liu,Lujun Zhao,Zhaoxiang Ye,André Dekker,Leonard Wee
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (8): 2462-2481 被引量:20
标识
DOI:10.1007/s00259-021-05658-9
摘要

Studies based on machine learning-based quantitative imaging techniques have gained much interest in cancer research. The aim of this review is to critically appraise the existing machine learning-based quantitative imaging analysis studies predicting outcomes of esophageal cancer after concurrent chemoradiotherapy in accordance with PRISMA guidelines.A systematic review was conducted in accordance with PRISMA guidelines. The citation search was performed via PubMed and Embase Ovid databases for literature published before April 2021. From each full-text article, study characteristics and model information were summarized. We proposed an appraisal matrix with 13 items to assess the methodological quality of each study based on recommended best-practices pertaining to quality.Out of 244 identified records, 37 studies met the inclusion criteria. Study endpoints included prognosis, treatment response, and toxicity after concurrent chemoradiotherapy with reported discrimination metrics in validation datasets between 0.6 and 0.9, with wide variation in quality. A total of 30 studies published within the last 5 years were evaluated for methodological quality and we found 11 studies with at least 6 "good" item ratings.A substantial number of studies lacked prospective registration, external validation, model calibration, and support for use in clinic. To further improve the predictive power of machine learning-based models and translate into real clinical applications in cancer research, appropriate methodologies, prospective registration, and multi-institution validation are recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃饼妹妹完成签到,获得积分10
2秒前
jiujieweizi完成签到 ,获得积分10
3秒前
Rui完成签到,获得积分10
8秒前
bafanbqg发布了新的文献求助10
9秒前
10秒前
li关注了科研通微信公众号
12秒前
大个应助qiao采纳,获得10
12秒前
科研女仆完成签到 ,获得积分10
12秒前
盟主完成签到 ,获得积分10
13秒前
13秒前
heart发布了新的文献求助30
16秒前
青青完成签到,获得积分10
17秒前
17秒前
充电宝应助tom采纳,获得10
18秒前
18秒前
九月完成签到,获得积分10
20秒前
heart完成签到,获得积分10
21秒前
li发布了新的文献求助10
23秒前
30秒前
30秒前
昵称发布了新的文献求助10
31秒前
meng完成签到,获得积分10
32秒前
HongqiZhang发布了新的文献求助10
32秒前
Owen应助儒雅凡桃采纳,获得10
32秒前
33秒前
今今发布了新的文献求助10
37秒前
DrY发布了新的文献求助10
37秒前
39秒前
安安发布了新的文献求助20
40秒前
41秒前
彭于晏应助baiyujing采纳,获得10
42秒前
zzz完成签到 ,获得积分10
43秒前
44秒前
害羞万天发布了新的文献求助10
44秒前
善良的疯丫头完成签到,获得积分10
45秒前
46秒前
baiyujing完成签到,获得积分10
47秒前
mmmm完成签到,获得积分10
48秒前
50秒前
rony发布了新的文献求助10
52秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843