A data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing gated recurrent network

铲运机现场 人工神经网络 粗集 集合(抽象数据类型) 计算机科学 非线性系统 控制理论(社会学) 数据挖掘 工程类 人工智能 量子力学 物理 万维网 程序设计语言 控制(管理)
作者
Hong He,Zhengxiong Lu,Chuanwei Zhang,Yuan Wang,Wei Guo,Shuanfeng Zhao
出处
期刊:Energy Reports [Elsevier BV]
卷期号:7: 1352-1362 被引量:1
标识
DOI:10.1016/j.egyr.2021.09.127
摘要

The dynamic load forecasting of scraper conveyer is one of the key problems that need to be solved in unmanned coal mining. The dynamic load forecasting system of scraper conveyer is a complex, multivariable, and nonlinear system, and there are coupling relations between every variable. It is very difficult to establish precise mathematic model. Therefore, based on rough set and the gated recurrent units (GRU), this study proposes a data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing GRU network. First, the rough set was applied to carry on for a variety of factors affecting load forecasting of scraper conveyer to optimize the model input, and the importance of each attribute for load of scraper conveyer was obtained. Then, a multilayered self-normalizing gated recurrent units (MS-GRU) model is proposed for the dynamic load forecasting of scraper conveyer. This model introduces scaled exponential linear units (SELU) activation function to squash the hidden states to calculate the output of the model, and the exploding and vanishing gradient problem are overcome in a stacked GRU neural network. Finally, an experiment is applied to verify the proposed model in this paper. The experimental results show that this article Compared with the existing methods, the model shows a higher accuracy rate 95.8%, which can well complete the prediction of the operating parameters of the shearer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Princess完成签到,获得积分10
刚刚
1秒前
2秒前
调皮冬日完成签到,获得积分10
2秒前
zumii发布了新的文献求助10
2秒前
JamesPei应助张婷采纳,获得20
2秒前
3秒前
lll发布了新的文献求助10
3秒前
大胆的凡发布了新的文献求助10
5秒前
沉静的时光完成签到,获得积分10
5秒前
刘美茹发布了新的文献求助10
7秒前
情怀应助zumii采纳,获得10
8秒前
所所应助小梅采纳,获得100
8秒前
穆小菜发布了新的文献求助10
9秒前
彗子子完成签到 ,获得积分10
10秒前
小白应助欧巴拉吧采纳,获得20
10秒前
10秒前
13秒前
13秒前
烟花应助hob采纳,获得10
15秒前
华仔应助hob采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
穆小菜发布了新的文献求助10
18秒前
田様应助Maydalian采纳,获得10
18秒前
aa121599发布了新的文献求助10
18秒前
善学以致用应助爱笑雨双采纳,获得10
19秒前
陶醉的熊发布了新的文献求助10
19秒前
韩野发布了新的文献求助10
19秒前
大胆的凡完成签到,获得积分10
20秒前
21秒前
abb发布了新的文献求助10
21秒前
小五完成签到 ,获得积分10
22秒前
阿哲发布了新的文献求助10
22秒前
可耐的茉莉完成签到,获得积分10
23秒前
24秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803756
求助须知:如何正确求助?哪些是违规求助? 3348586
关于积分的说明 10339425
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682727
邀请新用户注册赠送积分活动 808390
科研通“疑难数据库(出版商)”最低求助积分说明 764096