Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review

人工智能 线性判别分析 支持向量机 机器学习 偏最小二乘回归 计算机科学 聚类分析 人工神经网络 主成分分析 降维 领域(数学) 决策树 层次聚类 随机森林 判别函数分析 数据挖掘 模式识别(心理学) 数学 纯数学
作者
Haiyang Chen,He Yu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:50 (01): 91-131 被引量:43
标识
DOI:10.1142/s0192415x22500045
摘要

Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的绿兰完成签到 ,获得积分10
1秒前
lucfer发布了新的文献求助10
1秒前
勤劳画笔完成签到,获得积分20
2秒前
热心如之完成签到,获得积分10
4秒前
ccob完成签到,获得积分10
5秒前
爆米花应助Chaimengdi采纳,获得10
6秒前
勤劳画笔发布了新的文献求助10
6秒前
快乐星球完成签到 ,获得积分10
6秒前
8秒前
8秒前
完美世界应助YXYWZMSZ采纳,获得10
10秒前
123发布了新的文献求助10
10秒前
汉堡包应助叽叽采纳,获得10
10秒前
10秒前
迷路幻柏完成签到,获得积分10
11秒前
领导范儿应助qcwindchasing采纳,获得10
11秒前
大胆的渊思完成签到 ,获得积分10
12秒前
SciGPT应助chhe采纳,获得10
12秒前
幸福的襄完成签到,获得积分10
12秒前
执着访文完成签到,获得积分10
12秒前
介入小孙发布了新的文献求助10
13秒前
九九发布了新的文献求助30
13秒前
charles_dong完成签到,获得积分10
13秒前
13秒前
quzhenzxxx完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Nic关闭了Nic文献求助
15秒前
taoliu发布了新的文献求助10
15秒前
小叮当完成签到,获得积分10
15秒前
16秒前
楚眠完成签到,获得积分10
18秒前
执着访文发布了新的文献求助10
18秒前
慕青应助九九采纳,获得10
19秒前
zzq1012发布了新的文献求助10
19秒前
AAA牢头发布了新的文献求助10
20秒前
1111发布了新的文献求助10
22秒前
lucas完成签到,获得积分10
22秒前
ding应助泡泡糖采纳,获得10
22秒前
luo发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Methane Conversion Routes 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048920
求助须知:如何正确求助?哪些是违规求助? 4277164
关于积分的说明 13332673
捐赠科研通 4091710
什么是DOI,文献DOI怎么找? 2239234
邀请新用户注册赠送积分活动 1246058
关于科研通互助平台的介绍 1174695