亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review

人工智能 线性判别分析 支持向量机 机器学习 偏最小二乘回归 计算机科学 聚类分析 人工神经网络 主成分分析 降维 领域(数学) 决策树 层次聚类 随机森林 判别函数分析 数据挖掘 模式识别(心理学) 数学 纯数学
作者
Haiyang Chen,He Yu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:50 (01): 91-131 被引量:39
标识
DOI:10.1142/s0192415x22500045
摘要

Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
怕孤独的白凡完成签到 ,获得积分10
14秒前
24秒前
31秒前
32秒前
优美的谷完成签到,获得积分10
41秒前
56秒前
flyinthesky完成签到,获得积分10
1分钟前
情怀应助调皮乌采纳,获得10
1分钟前
HC完成签到,获得积分10
1分钟前
1分钟前
骆十八完成签到,获得积分10
1分钟前
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
1分钟前
yueying完成签到,获得积分10
1分钟前
李爱国应助一点采纳,获得10
1分钟前
1分钟前
桃桃发布了新的文献求助10
1分钟前
一点发布了新的文献求助10
1分钟前
田様应助桃桃采纳,获得10
1分钟前
文艺鞋子完成签到 ,获得积分10
1分钟前
testmanfuxk完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得20
2分钟前
AnjeXi完成签到 ,获得积分10
2分钟前
2分钟前
夏至完成签到 ,获得积分10
3分钟前
李小伟完成签到,获得积分10
3分钟前
Aixx完成签到 ,获得积分10
3分钟前
肖肖完成签到,获得积分10
3分钟前
3分钟前
huangYinghua发布了新的文献求助10
3分钟前
Alex应助范博采纳,获得20
3分钟前
wanci应助huangYinghua采纳,获得10
3分钟前
李健应助科研通管家采纳,获得10
4分钟前
汉堡包应助科研通管家采纳,获得10
4分钟前
空咻咻发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4443074
求助须知:如何正确求助?哪些是违规求助? 3914240
关于积分的说明 12154263
捐赠科研通 3562323
什么是DOI,文献DOI怎么找? 1955689
邀请新用户注册赠送积分活动 995428
科研通“疑难数据库(出版商)”最低求助积分说明 890660