已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review

人工智能 线性判别分析 支持向量机 机器学习 偏最小二乘回归 计算机科学 聚类分析 人工神经网络 主成分分析 降维 领域(数学) 决策树 层次聚类 随机森林 判别函数分析 数据挖掘 模式识别(心理学) 数学 纯数学
作者
Haiyang Chen,He Yu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:50 (01): 91-131 被引量:43
标识
DOI:10.1142/s0192415x22500045
摘要

Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
炙热安彤给炙热安彤的求助进行了留言
2秒前
2秒前
3秒前
FashionBoy应助小米采纳,获得10
4秒前
乐乐应助薄红采纳,获得10
4秒前
5秒前
6秒前
马宁婧完成签到 ,获得积分10
9秒前
9秒前
Want发布了新的文献求助10
10秒前
cindy完成签到,获得积分10
11秒前
研友_VZG7GZ应助不想上班了采纳,获得10
11秒前
AAAAa完成签到,获得积分10
13秒前
zyx应助沉默的小天鹅采纳,获得10
15秒前
无花果应助中单阿飞采纳,获得10
15秒前
ding应助你嵙这个期刊没买采纳,获得10
16秒前
哭泣愚志完成签到 ,获得积分10
16秒前
思源应助努力考博采纳,获得10
22秒前
27秒前
30秒前
31秒前
中单阿飞完成签到,获得积分20
31秒前
32秒前
努力考博发布了新的文献求助10
35秒前
36秒前
38秒前
情怀应助超威蓝猫采纳,获得10
38秒前
39秒前
budoc完成签到,获得积分10
40秒前
山楂卷完成签到,获得积分10
40秒前
蜡笔小z完成签到 ,获得积分10
40秒前
41秒前
北星发布了新的文献求助10
41秒前
CodeCraft应助泥嚎采纳,获得10
41秒前
Zz发布了新的文献求助10
42秒前
deswin发布了新的文献求助10
42秒前
赘婿应助湘南之地采纳,获得10
42秒前
zzzy完成签到 ,获得积分10
42秒前
彭于晏应助violet采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493402
求助须知:如何正确求助?哪些是违规求助? 4591431
关于积分的说明 14433835
捐赠科研通 4523958
什么是DOI,文献DOI怎么找? 2478514
邀请新用户注册赠送积分活动 1463494
关于科研通互助平台的介绍 1436350