Prediction of O2/N2 Selectivity in Metal–Organic Frameworks via High-Throughput Computational Screening and Machine Learning

选择性 材料科学 金属有机骨架 计算 集合(抽象数据类型) 扩散 吸附 Atom(片上系统) 计算机科学 生物系统 算法 物理化学 热力学 物理 化学 有机化学 程序设计语言 催化作用 嵌入式系统 生物
作者
Ibrahim Orhan,Hilal Daglar,Seda Keskın,Tu C. Le,Ravichandar Babarao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (1): 736-749 被引量:41
标识
DOI:10.1021/acsami.1c18521
摘要

Machine learning (ML), which is becoming an increasingly popular tool in various scientific fields, also shows the potential to aid in the screening of materials for diverse applications. In this study, the computation-ready experimental (CoRE) metal-organic framework (MOF) data set for which the O2 and N2 uptakes, self-diffusivities, and Henry's constants were calculated was used to fit the ML models. The obtained models were subsequently employed to predict such properties for a hypothetical MOF (hMOF) data set and to identify structures having a high O2/N2 selectivity at room temperature. The performance of the model on known entries indicated that it would serve as a useful tool for the prediction of MOF characteristics with r2 correlations between the true and predicted values typically falling between 0.7 and 0.8. The use of different descriptor groups (geometric, atom type, and chemical) was studied; the inclusion of all descriptor groups yielded the best overall results. Only a small number of entries surpassed the performance of those in the CoRE MOF set; however, the use of ML was able to present the structure-property relationship and to identity the top performing hMOFs for O2/N2 separation based on the adsorption and diffusion selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
符寄柔发布了新的文献求助10
1秒前
1秒前
2秒前
4秒前
5秒前
ergatoid完成签到,获得积分10
6秒前
欢喜的天空完成签到,获得积分20
6秒前
香蕉觅云应助大坚果采纳,获得20
8秒前
9秒前
10秒前
14秒前
文献看不懂应助火花采纳,获得10
14秒前
15秒前
活力的雨雪完成签到,获得积分10
16秒前
17秒前
思源应助lipppu采纳,获得10
17秒前
王清水完成签到 ,获得积分10
17秒前
17秒前
文茵完成签到,获得积分10
18秒前
19秒前
qiulong发布了新的文献求助10
20秒前
Hello应助peanut采纳,获得10
20秒前
wenbin发布了新的文献求助10
21秒前
细心的小鸽子完成签到,获得积分10
24秒前
大坚果发布了新的文献求助20
25秒前
wenbin完成签到,获得积分10
27秒前
村口的帅老头完成签到 ,获得积分10
28秒前
duo完成签到,获得积分10
29秒前
31秒前
31秒前
雨夜星空应助科研通管家采纳,获得10
32秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
orixero应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
传奇3应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
Pothos应助科研通管家采纳,获得20
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893