Shape-Controlled Deterministic Assembly of Nanowires

纳米线 纳米技术 材料科学 结晶学 化学
作者
Yunlong Zhao,Jun Yao,Lin Xu,Max Mankin,YinBo Zhu,HengAn Wu,Liqiang Mai,Qingjie Zhang,Charles M. Lieber
出处
期刊:Nano Letters [American Chemical Society]
卷期号:16 (4): 2644-2650 被引量:59
标识
DOI:10.1021/acs.nanolett.6b00292
摘要

Large-scale, deterministic assembly of nanowires and nanotubes with rationally controlled geometries could expand the potential applications of one-dimensional nanomaterials in bottom-up integrated nanodevice arrays and circuits. Control of the positions of straight nanowires and nanotubes has been achieved using several assembly methods, although simultaneous control of position and geometry has not been realized. Here, we demonstrate a new concept combining simultaneous assembly and guided shaping to achieve large-scale, high-precision shape controlled deterministic assembly of nanowires. We lithographically pattern U-shaped trenches and then shear transfer nanowires to the patterned substrate wafers, where the trenches serve to define the positions and shapes of transferred nanowires. Studies using semicircular trenches defined by electron-beam lithography yielded U-shaped nanowires with radii of curvature defined by inner surface of the trenches. Wafer-scale deterministic assembly produced U-shaped nanowires for >430 000 sites with a yield of ∼90%. In addition, mechanistic studies and simulations demonstrate that shaping results in primarily elastic deformation of the nanowires and show clearly the diameter-dependent limits achievable for accessible forces. Last, this approach was used to assemble U-shaped three-dimensional nanowire field-effect transistor bioprobe arrays containing 200 individually addressable nanodevices. By combining the strengths of wafer-scale top-down fabrication with diverse and tunable properties of one-dimensional building blocks in novel structural configurations, shape-controlled deterministic nanowire assembly is expected to enable new applications in many areas including nanobioelectronics and nanophotonics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
2秒前
小丁同学应助外星人采纳,获得10
2秒前
完美世界应助Foch采纳,获得10
3秒前
4秒前
4秒前
星海发布了新的文献求助10
5秒前
千空发布了新的文献求助10
5秒前
所所应助熊小婷采纳,获得10
5秒前
小蘑菇应助ethanyangzzz采纳,获得10
5秒前
刘振扬发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
111完成签到,获得积分10
7秒前
香蕉觅云应助11111采纳,获得10
7秒前
舒心的娃发布了新的文献求助10
9秒前
ww完成签到,获得积分10
9秒前
李健的小迷弟应助刘振扬采纳,获得10
10秒前
一片叶子完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
mou发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
李健的粉丝团团长应助qz采纳,获得10
15秒前
15秒前
在水一方应助JEFF采纳,获得10
15秒前
小二郎应助sdahjjyk采纳,获得10
16秒前
ww发布了新的文献求助10
16秒前
dudu发布了新的文献求助10
17秒前
17秒前
可爱的函函应助2345采纳,获得10
17秒前
18秒前
18秒前
冰魂应助玖生采纳,获得10
19秒前
冰魂应助zh采纳,获得20
19秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870749
求助须知:如何正确求助?哪些是违规求助? 3412885
关于积分的说明 10681633
捐赠科研通 3137284
什么是DOI,文献DOI怎么找? 1730852
邀请新用户注册赠送积分活动 834413
科研通“疑难数据库(出版商)”最低求助积分说明 781154