材料科学
阳极
法拉第效率
电解质
枝晶(数学)
化学工程
锂(药物)
金属锂
相间
阴极
图层(电子)
纳米颗粒
金属
容量损失
离子电导率
电极
纳米复合材料
电化学
锂离子电池的纳米结构
半电池
无机化学
纳米技术
电导率
涂层
磷酸钒锂电池
电化学窗口
原子层沉积
作者
Raja Palani,Yi‐Shiuan Wu,J. S. Chen,Wen‐Chen Chien,Arshid Numan,Jiang Chang,Rajan Jose,Chun‐Chen Yang
出处
期刊:Small
[Wiley]
日期:2025-12-29
卷期号:: e12973-e12973
标识
DOI:10.1002/smll.202512973
摘要
ABSTRACT Lithium metal anodes are promising for next‐generation high‐energy batteries owing to a high theoretical capacity and low redox potential. However, their use is limited due to uncontrolled dendrite growth, unstable solid electrolyte interphase (SEI), and poor cycling stability. This article reports a new thin layer composed of organic and inorganic materials, specifically combining hexafluorocyclotriphosphazene (HFPN) and Al 2 O 3 nanoparticles along with a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) copolymer binder. This layer is applied to Li metal anodes using a spin coating method to create a HFPN@Al 2 O 3 artificial SEI (ASEI) layer (HAPH@Li). HAPH@Li benefits from the strength of Al 2 O 3 and ionic conductivity of PVDF‐HFP. The HFPN additive, rich in F, N, and P, assisted in the formation of a stable SEI to effectively control the flow of Li ions and reduce Li dendrite formation. Moreover, full cells assembled using HAPH@Li anodes paired with Ni‐rich NCMA90 cathodes operated at 2.8–4.3 V. The NCMA/HAPH 0.5:1 @Li full cell outperformed other full cells with bare and other ASEI‐modified Li anodes. The full cell achieved a high Coulombic efficiency of > 99.62%, initial discharge capacity of 181.9 mAh g −1 , and capacity retention exceeding 75.7% over 300 cycles at 1C/1C.
科研通智能强力驱动
Strongly Powered by AbleSci AI