催化作用
离解(化学)
材料科学
氢
吉布斯自由能
解吸
制氢
金属
化学物理
吸附
过渡金属
分解水
电子
化学工程
氢燃料
纳米技术
电荷密度
氢经济
电子结构
电场
无机化学
熵(时间箭头)
工作(物理)
原子电子跃迁
高能
密度泛函理论
化学反应
作者
Bangxin Li,Mingyue Yuan,Yihao Liu,Jinwen Zhang,Yuting Miao,Xuhui Xiong,Jiachen Sun,Renchao Che,Heyong HE
标识
DOI:10.1002/aenm.202505018
摘要
ABSTRACT Conventional non‐noble hydrogen evolution reaction catalysts are plagued by excessive hydrogen adsorption and instability. To overcome this, we pioneer a high‐entropy single‐atom (HESA) catalyst via precise anchoring of multiple transition metals on carbon supports. The HESA catalyst achieves record‐breaking alkaline HER performance of 44 mV@10 mA cm −2 (matching commercial Pt/C catalyst) and 300 h stability, resolving the persistent activity‐stability trade‐off. Systematical characterizations reveal that low‐coordination metal sites induce significant metal‐support charge redistribution. Electronegative supports withdraw electrons from metal centers, while π‐back‐donation downshifts metal d‐band centers, optimizing the Gibbs free energy of intermediate H atoms (ΔG H* ). Atomic‐scale imaging further confirms uniform charge distribution and Ångström‐level electric field response. Crucially, adjacent multi‐metal sites synergistically lower energy barriers for both water dissociation and hydrogen desorption through a synergistic electronic buffering effect. This work establishes entropy‐driven microenvironment engineering as a paradigm for cooperative optimization of active sites and electronic structures, opening avenues for durable non‐precious catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI