Protein lysine methacrylation (Kmea) is a recently identified post-translational modification whose biofunction remains poorly understood. Until now, there has been no chemical labeling method for Kmea modification, which has severely hindered the discovery and functional studies of methacrylated proteins. Here, we developed a photocatalytic thia-Michael reaction system for the chemoselective labeling of protein methacrylation. By exploiting the dual effect of steric hindrance and the stability of the generated C-center radical, the reaction interference of the structural isomer crotonylation can be efficiently avoided. Based on this reaction, a multifunctional water-soluble benzenethiol-azide probe azDSH was designed and synthesized, and a workflow for the specific labeling, enrichment, and identification of Kmea proteins was developed. Proteomic identification of histone and nuclear protein extracts and whole-cell lysate revealed a number of novel Kmea proteins and modification sites besides histones, such as HMGB1, TdIF2, UHRF1, HNRPD, BRWD1, TAF1, TACC1, and SETD3, providing new targets for the study of epigenetic regulation. This study provides an effective method for the analysis of protein methacrylation modifications in biological systems.