催化作用
材料科学
纳米颗粒
苯胺
离解(化学)
惰性
密度泛函理论
光化学
化学工程
电子转移
无机化学
多孔性
产量(工程)
纳米技术
离子
铜
多相催化
碳纳米管
组合化学
碳纤维
转移加氢
作者
Zhenxing Ren,Lizhen Lian,Xingle Zuo,Xinkang Cui,Min Zhang,Liu Deng,Liqiang Wang,You-Nian Liu
标识
DOI:10.1002/adfm.202524811
摘要
Abstract Copper‐based catalysts are attractive for hydrogenation, exemplified by nitro‑group reduction to industrially important aromatic amines, but are limited by intrinsically weak H 2 activation arising from an inert electronic structure. Herein, a dual‐site catalyst is developed by integrating FeN 4 and defect‐rich Cu 1.81 S nanoparticles anchored on porous carbon (Cu 1.81 S/Fe 1 @PC) via a protein‐metal ion network‐derived route. Cu 1.81 S/Fe 1 @PC features a high specific surface area (1130 m 2 g −1 ) and a unique N, S‐codopant structure. Density functional theory reveals electron transfer from FeN 4 to Cu 1.81 S, and the abundant lattice defects in Cu 1.81 S, which lower the H─H dissociation barrier on Cu sites. At 120 °C and 10 bar H 2 , the as‐prepared Cu 1.81 S/Fe 1 @PC catalyst delivers >99% aniline yield with a turnover frequency of 625 h −1 , ranking among the most active Cu‐ or Fe‐based catalysts for nitroarene hydrogenation. This work provides a new approach for designing and preparing high‐performance dual‐site catalysts, applicable to, but not limited to, hydrogenation reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI