亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The C-reactive protein-triglyceride glucose index (CTI) predicts mortality in cardiovascular-kidney-metabolic syndrome: a dual-cohort study with machine learning validation

医学 危险系数 比例危险模型 置信区间 全国健康与营养检查调查 列线图 心血管健康 血压 纵向研究 一致性 内科学 多元统计 体质指数 Lasso(编程语言) 统计 糖尿病 肾功能 生存分析 机器学习 接收机工作特性 死亡率 随机森林 曲线下面积 回归分析 回归 死亡风险 人工智能 交叉验证 预测建模 支持向量机
作者
Gao Song
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:112 (1): 1340-1352
标识
DOI:10.1097/js9.0000000000003560
摘要

Background: Cardiova scular-kidney-metabolic (CKM) syndrome urgently requires accessible biomarkers for stratification of death risk. This study validated the predictive value of a novel inflammatory metabolic biomarker, the C-reactive protein-triglyceride-glucose index (CTI), for all-cause and cardiovascular mortality in dual U.S. and Chinese cohorts and developed a survival analysis machine learning (ML) model. Methods: We integrated data from the National Health and Nutrition Examination Survey (NHANES, n = 8784) and China Health and Retirement Longitudinal Study (CHARLS, n = 7745). Multivariate Cox regression was used to evaluate the associations between CTI (formula: 0.412 × Ln(C-reactive protein) + Ln[triglycerides × fasting blood glucose/2]) and mortality. Seven ML models were built using the NHANES data, with CHARLS as the external validation set. SHapley Additive exPlanations (SHAP) clarified the prediction mechanisms. Results: Per 1-standard deviation increase in CTI, all-cause mortality risk increased significantly (NHANES: hazard ratios (HRs) = 1.31, 95% confidence interval (CI): 1.19–1.44; CHARLS: HR = 1.67, 95% CI: 1.44–1.93), and cardiovascular mortality increased by 35% in NHANES (HR = 1.35, P < 0.001). The Random Survival Forest (RSF) model performed best: internal validation area under the curve (AUC) = 0.866 (NHANES) with the highest time-dependent Concordance Index, and external validation in CHARLS yielded AUCs of 0.811 (3-year), 0.804 (5-year), and 0.775 (9/12-year), outperforming other models. SHAP analysis identified age (42.2% contribution) and CTI (10.1%) as key predictors, with age, CTI, and systolic blood pressure acting via independent main effects, whereas estimated glomerular filtration rate exerted an influence primarily through synergistic interactions. Conclusion: CTI, a novel inflammatory metabolic biomarker, reliably predicts all-cause and cardiovascular mortality in CKM syndrome, with consistent validation across NHANES and CHARLS. The NHANES-derived RSF model (AUC > 0.86) combines high accuracy and clinical utility, and is supported by stable external validation in CHARLS and sensitivity analyses. SHAP-based mechanistic insights further enable personalized risk assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gossip完成签到,获得积分10
5秒前
13秒前
Gossip发布了新的文献求助30
19秒前
20秒前
ttxxcdx完成签到 ,获得积分10
24秒前
29秒前
34秒前
Fan应助fuyaoye2010采纳,获得10
41秒前
赘婿应助科研通管家采纳,获得10
47秒前
YifanWang应助科研通管家采纳,获得30
47秒前
YifanWang应助科研通管家采纳,获得30
47秒前
47秒前
YifanWang应助科研通管家采纳,获得30
47秒前
YifanWang应助科研通管家采纳,获得30
47秒前
1分钟前
莫miang完成签到,获得积分10
1分钟前
1分钟前
ling361完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
矢思然完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
中中完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
科研通AI6.1应助Karol采纳,获得10
2分钟前
2分钟前
2分钟前
桐桐应助Karol采纳,获得10
2分钟前
领导范儿应助Karol采纳,获得20
2分钟前
LucyMartinez发布了新的文献求助10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746752
求助须知:如何正确求助?哪些是违规求助? 5438610
关于积分的说明 15355852
捐赠科研通 4886774
什么是DOI,文献DOI怎么找? 2627426
邀请新用户注册赠送积分活动 1575893
关于科研通互助平台的介绍 1532627