已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Training and Interpreting Machine Learning Algorithms to Evaluate Fall Risk After Emergency Department Visits

机器学习 急诊科 人工智能 随机森林 阿达布思 介绍 需要治疗的数量 医学 接收机工作特性 算法 背景(考古学) 计算机科学 置信区间 物理疗法 相对风险 支持向量机 家庭医学 精神科 生物 内科学 古生物学
作者
Brian W. Patterson,Collin J. Engstrom,Varun Sah,Maureen A. Smith,Eneida A. Mendonça,Michael S. Pulia,Michael D. Repplinger,Azita G. Hamedani,David Page,Manish N. Shah
出处
期刊:Medical Care [Lippincott Williams & Wilkins]
卷期号:57 (7): 560-566 被引量:38
标识
DOI:10.1097/mlr.0000000000001140
摘要

Background: Machine learning is increasingly used for risk stratification in health care. Achieving accurate predictive models do not improve outcomes if they cannot be translated into efficacious intervention. Here we examine the potential utility of automated risk stratification and referral intervention to screen older adults for fall risk after emergency department (ED) visits. Objective: This study evaluated several machine learning methodologies for the creation of a risk stratification algorithm using electronic health record data and estimated the effects of a resultant intervention based on algorithm performance in test data. Methods: Data available at the time of ED discharge were retrospectively collected and separated into training and test datasets. Algorithms were developed to predict the outcome of a return visit for fall within 6 months of an ED index visit. Models included random forests, AdaBoost, and regression-based methods. We evaluated models both by the area under the receiver operating characteristic (ROC) curve, also referred to as area under the curve (AUC), and by projected clinical impact, estimating number needed to treat (NNT) and referrals per week for a fall risk intervention. Results: The random forest model achieved an AUC of 0.78, with slightly lower performance in regression-based models. Algorithms with similar performance, when evaluated by AUC, differed when placed into a clinical context with the defined task of estimated NNT in a real-world scenario. Conclusion: The ability to translate the results of our analysis to the potential tradeoff between referral numbers and NNT offers decisionmakers the ability to envision the effects of a proposed intervention before implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的安珊完成签到 ,获得积分10
刚刚
impending完成签到,获得积分10
1秒前
若水完成签到,获得积分10
1秒前
Harper完成签到,获得积分10
4秒前
李健的小迷弟应助嘿小白采纳,获得10
5秒前
123完成签到 ,获得积分10
5秒前
张豪杰完成签到,获得积分10
6秒前
北地风情完成签到 ,获得积分10
8秒前
CipherSage应助SMULJL采纳,获得10
9秒前
11秒前
minnie完成签到 ,获得积分10
12秒前
12秒前
多情道之完成签到 ,获得积分10
15秒前
短巷完成签到 ,获得积分10
16秒前
LSY28发布了新的文献求助10
17秒前
粥粥完成签到 ,获得积分10
18秒前
mufeixue发布了新的文献求助10
18秒前
无限达完成签到,获得积分10
19秒前
SDNUDRUG完成签到,获得积分10
20秒前
22秒前
义气幼珊完成签到 ,获得积分10
24秒前
烟花应助Jieun采纳,获得10
25秒前
孤独尔白应助张豪杰采纳,获得10
27秒前
LSY28完成签到,获得积分10
27秒前
27秒前
拂晓晓完成签到 ,获得积分10
28秒前
Adhklu完成签到 ,获得积分10
32秒前
34秒前
神外第一刀完成签到 ,获得积分10
37秒前
zzz完成签到,获得积分10
39秒前
快乐小王完成签到,获得积分10
42秒前
xyyyy完成签到 ,获得积分10
43秒前
deng203完成签到,获得积分10
44秒前
45秒前
46秒前
sadada发布了新的文献求助50
51秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
所所应助科研通管家采纳,获得10
53秒前
科研通AI2S应助望月的猪采纳,获得10
56秒前
Wjh123456完成签到,获得积分10
57秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792392
求助须知:如何正确求助?哪些是违规求助? 3336634
关于积分的说明 10281701
捐赠科研通 3053408
什么是DOI,文献DOI怎么找? 1675582
邀请新用户注册赠送积分活动 803557
科研通“疑难数据库(出版商)”最低求助积分说明 761457