A clinically applicable approach to continuous prediction of future acute kidney injury

背景(考古学) 急性肾损伤 透析 急症护理 医学 急诊医学 医疗急救 医疗保健 重症监护医学 内科学 生物 经济增长 古生物学 经济
作者
Nenad Tomašev,Xavier Glorot,Jack W. Rae,Michał Zieliński,Harry Askham,André Saraiva,Anne Mottram,Clemens Meyer,Suman Ravuri,Ivan Protsyuk,Alistair Connell,Cían Hughes,Alan Karthikesalingam,Julien Cornebise,Hugh Montgomery,Geraint Rees,Chris Laing,Clifton R. Baker,Kelly Peterson,Ruth M. Reeves
出处
期刊:Nature [Nature Portfolio]
卷期号:572 (7767): 116-119 被引量:899
标识
DOI:10.1038/s41586-019-1390-1
摘要

The early prediction of deterioration could have an important role in supporting healthcare professionals, as an estimated 11% of deaths in hospital follow a failure to promptly recognize and treat deteriorating patients1. To achieve this goal requires predictions of patient risk that are continuously updated and accurate, and delivered at an individual level with sufficient context and enough time to act. Here we develop a deep learning approach for the continuous risk prediction of future deterioration in patients, building on recent work that models adverse events from electronic health records2–17 and using acute kidney injury—a common and potentially life-threatening condition18—as an exemplar. Our model was developed on a large, longitudinal dataset of electronic health records that cover diverse clinical environments, comprising 703,782 adult patients across 172 inpatient and 1,062 outpatient sites. Our model predicts 55.8% of all inpatient episodes of acute kidney injury, and 90.2% of all acute kidney injuries that required subsequent administration of dialysis, with a lead time of up to 48 h and a ratio of 2 false alerts for every true alert. In addition to predicting future acute kidney injury, our model provides confidence assessments and a list of the clinical features that are most salient to each prediction, alongside predicted future trajectories for clinically relevant blood tests9. Although the recognition and prompt treatment of acute kidney injury is known to be challenging, our approach may offer opportunities for identifying patients at risk within a time window that enables early treatment. A deep learning approach that predicts the risk of acute kidney injury may help to identify patients at risk of health deterioration within a time window that enables early treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hikari发布了新的文献求助10
1秒前
赵芳完成签到,获得积分10
4秒前
凉雨渲完成签到,获得积分10
4秒前
小姑不在应助唐泽雪穗采纳,获得40
11秒前
zybbb完成签到 ,获得积分10
16秒前
快来拾糖完成签到 ,获得积分10
17秒前
斯文听南发布了新的文献求助10
17秒前
ephore应助多情山蝶采纳,获得50
18秒前
wanci应助wildeager采纳,获得10
22秒前
郑仲禹完成签到 ,获得积分10
24秒前
彭于晏应助务实雪珍采纳,获得50
25秒前
烂漫映之完成签到 ,获得积分10
27秒前
城南她似海完成签到 ,获得积分10
27秒前
Xiaosi完成签到 ,获得积分10
28秒前
asd完成签到 ,获得积分20
30秒前
LILI完成签到,获得积分10
32秒前
35秒前
大大的西瓜完成签到 ,获得积分10
37秒前
大模型应助hikari采纳,获得10
39秒前
科研通AI2S应助小远采纳,获得10
40秒前
41秒前
犹豫笑旋发布了新的文献求助10
41秒前
潇洒乾完成签到 ,获得积分10
42秒前
动人的怀柔完成签到,获得积分10
42秒前
小马甲应助CoCoCat采纳,获得10
43秒前
1111完成签到 ,获得积分10
43秒前
风月难安完成签到,获得积分20
45秒前
gong发布了新的文献求助20
46秒前
夏xia完成签到 ,获得积分10
49秒前
50秒前
herococa应助沙维荣采纳,获得10
50秒前
52秒前
坚强的翠霜完成签到 ,获得积分10
53秒前
Jacky应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科目三应助科研通管家采纳,获得10
54秒前
华仔应助科研通管家采纳,获得10
54秒前
斯文败类应助科研通管家采纳,获得10
54秒前
54秒前
小远发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4775817
求助须知:如何正确求助?哪些是违规求助? 4107972
关于积分的说明 12707328
捐赠科研通 3829092
什么是DOI,文献DOI怎么找? 2112437
邀请新用户注册赠送积分活动 1136244
关于科研通互助平台的介绍 1019939