分数阶微积分
屈曲
梁(结构)
共形矩阵
流离失所(心理学)
振动
欧拉公式
Timoshenko梁理论
弯曲
工作(物理)
一般化
材料科学
伯努利原理
本构方程
数学分析
数学
结构工程
物理
有限元法
复合材料
量子力学
心理学
热力学
心理治疗师
工程类
作者
Zaher Rahimi,Samrand Rash Ahmadi,Wojciech Sumelka
出处
期刊:Acta Physica Polonica A
[Institute of Physics, Polish Academy of Sciences]
日期:2018-08-01
卷期号:134 (2): 574-582
被引量:7
标识
DOI:10.12693/aphyspola.134.574
摘要
Applications of fractional calculus in the constitutive relation lead to the fractional derivatives models.They are stately generalization of the integer derivatives models -this general form makes fractional derivatives models more flexible and suitable to describe properties and behavior of different materials/structures.In the present work, the general strain deformation gradient has been presented by using the modified conformable fractional derivatives definition.Within this approach the fractional Euler-Bernoulli beam theory has been formulated and applied to the analysis of free vibration, bending and buckling of micro/nanobeams which exhibit strong scale effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI