A review of exhaled breath: a key role in lung cancer diagnosis

医学 肺癌 重症监护医学 阶段(地层学) 人口 气体分析呼吸 呼出的空气 肺癌筛查 癌症 死亡率 医学物理学 肿瘤科 内科学 环境卫生 毒理 古生物学 解剖 生物
作者
Davide Marzorati,Luca Mainardi,Giulia Sedda,Roberto Gasparri,Lorenzo Spaggiari,Pietro Cerveri
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:13 (3): 034001-034001 被引量:76
标识
DOI:10.1088/1752-7163/ab0684
摘要

One of the main causes of the high mortality rate in lung cancer is the late-stage tumor detection. Early diagnosis is therefore essential to increase the chances of obtaining an effective treatment quickly thus increasing the survival rate. Current screening techniques are based on imaging, with low-dose computed tomography (LDCT) as the pivotal approach. Even if LDCT has high accuracy, its invasiveness and high false positive rate limit its application to high-risk population screening. A non-invasive, cost-efficient, and easy-to-use test should instead be designed as an alternative. Exhaled breath contains thousands of volatile organic compounds (VOCs). Since ancient times, it has been understood that changes in the VOCs' mixture may be directly related to the presence of a disease, and recent studies have quantified the change in the compounds' concentration. Analyzing exhaled breath to achieve lung cancer early diagnosis represents a non-invasive, low-cost, and user-friendly approach, thus being a promising candidate for high-risk lung cancer population screening. This review discusses technological solutions that have been proposed in the literature as tools to analyze exhaled breath for lung cancer diagnosis, together with factors that potentially affect the outcome of the analysis. Even if research on this topic started many years ago, and many different technological approaches have since been adopted, there is still no validated clinical application of this technique. Standard guidelines and protocols should be defined by the medical community in order to translate exhaled breath analysis to clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Asteroid采纳,获得10
刚刚
哈鲤发布了新的文献求助10
1秒前
终生科研徒刑完成签到 ,获得积分10
1秒前
紫罗兰花海完成签到 ,获得积分10
6秒前
占那个完成签到 ,获得积分10
8秒前
Silole完成签到,获得积分10
8秒前
yk完成签到,获得积分10
9秒前
可露丽完成签到,获得积分10
9秒前
hualidy完成签到,获得积分10
10秒前
冰销雪释完成签到,获得积分10
12秒前
zcbb完成签到,获得积分10
12秒前
13秒前
Asteroid完成签到,获得积分10
13秒前
调皮的蓝天完成签到 ,获得积分10
13秒前
cc完成签到,获得积分10
14秒前
哈鲤完成签到,获得积分10
15秒前
strama完成签到,获得积分10
18秒前
韩佳彤发布了新的文献求助10
19秒前
陶军辉完成签到 ,获得积分10
20秒前
25秒前
儒雅沛凝完成签到 ,获得积分10
25秒前
红叶完成签到,获得积分10
26秒前
正直涵菱完成签到 ,获得积分10
26秒前
krathhong完成签到 ,获得积分10
28秒前
caicai发布了新的文献求助10
29秒前
张颖完成签到 ,获得积分10
29秒前
badbaby完成签到 ,获得积分10
30秒前
笑笑完成签到 ,获得积分10
30秒前
Melody完成签到,获得积分10
32秒前
topsun完成签到,获得积分10
32秒前
56360完成签到,获得积分10
32秒前
yuanling完成签到 ,获得积分10
33秒前
顺顺利利毕业完成签到 ,获得积分10
33秒前
Lucas应助starry采纳,获得10
34秒前
搜集达人应助碎冰蓝采纳,获得10
34秒前
35秒前
niu完成签到,获得积分10
36秒前
36秒前
朱云云完成签到,获得积分10
37秒前
sugar完成签到,获得积分10
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352812
关于积分的说明 10360575
捐赠科研通 3068839
什么是DOI,文献DOI怎么找? 1685271
邀请新用户注册赠送积分活动 810410
科研通“疑难数据库(出版商)”最低求助积分说明 766113