Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse

松质骨 皮质骨 胫骨 材料科学 骨量 解剖 生物力学 生物医学工程 骨质疏松症 医学 病理
作者
Jing Wang,Xiaoyu Xu,Whitney A. Bullock,Russell P. Main
出处
期刊:Journal of Biomechanics [Elsevier BV]
卷期号:89: 85-94 被引量:27
标识
DOI:10.1016/j.jbiomech.2019.04.021
摘要

The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei关注了科研通微信公众号
1秒前
wzq发布了新的文献求助10
1秒前
1秒前
1秒前
lin发布了新的文献求助10
1秒前
Maestro_S应助123采纳,获得10
1秒前
2秒前
搞不好你们完成签到,获得积分10
3秒前
3秒前
3秒前
英姑应助mmxx采纳,获得10
6秒前
陨落星辰完成签到 ,获得积分10
7秒前
左佳伟发布了新的文献求助10
7秒前
FYZ发布了新的文献求助10
7秒前
思源应助Jakiro采纳,获得10
8秒前
tao发布了新的文献求助10
8秒前
木头鱼发布了新的文献求助10
8秒前
chen发布了新的文献求助10
10秒前
14秒前
shirley完成签到,获得积分10
19秒前
19秒前
研友_nPPzon完成签到,获得积分10
19秒前
chen完成签到,获得积分20
20秒前
Maestro_S应助123采纳,获得10
20秒前
单于思雁发布了新的文献求助10
20秒前
小月Anna完成签到,获得积分10
21秒前
22秒前
24秒前
科研通AI2S应助清欢采纳,获得30
25秒前
虚幻乐萱发布了新的文献求助10
26秒前
26秒前
yykyyk发布了新的文献求助10
26秒前
星辰大海应助忧虑的鹭洋采纳,获得10
26秒前
larsy完成签到 ,获得积分10
28秒前
29秒前
赘婿应助饱满雪柳采纳,获得10
33秒前
小姚发布了新的文献求助10
35秒前
zz7完成签到,获得积分10
35秒前
35秒前
YF是杨芳完成签到 ,获得积分10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188515
求助须知:如何正确求助?哪些是违规求助? 3724370
关于积分的说明 11734786
捐赠科研通 3401474
什么是DOI,文献DOI怎么找? 1866599
邀请新用户注册赠送积分活动 923440
科研通“疑难数据库(出版商)”最低求助积分说明 834502