计算机科学
桥接(联网)
忠诚
稀疏逼近
代表(政治)
语义鸿沟
人工智能
钥匙(锁)
信号(编程语言)
意义(存在)
模式识别(心理学)
高保真
人机交互
自然语言处理
机器学习
图像(数学)
心理学
政治
政治学
法学
计算机网络
电信
计算机安全
电气工程
心理治疗师
程序设计语言
工程类
图像检索
作者
John Wright,Yi Ma,Julien Mairal,Guillermo Sapiro,Thomas S. Huang,Shuicheng Yan
出处
期刊:Proceedings of the IEEE
[Institute of Electrical and Electronics Engineers]
日期:2010-05-10
卷期号:98 (6): 1031-1044
被引量:1811
标识
DOI:10.1109/jproc.2010.2044470
摘要
Techniques from sparse signal representation are beginning to see significant impact in computer vision, often on nontraditional applications where the goal is not just to obtain a compact high-fidelity representation of the observed signal, but also to extract semantic information. The choice of dictionary plays a key role in bridging this gap: unconventional dictionaries consisting of, or learned from, the training samples themselves provide the key to obtaining state-of-the-art results and to attaching semantic meaning to sparse signal representations. Understanding the good performance of such unconventional dictionaries in turn demands new algorithmic and analytical techniques. This review paper highlights a few representative examples of how the interaction between sparse signal representation and computer vision can enrich both fields, and raises a number of open questions for further study.
科研通智能强力驱动
Strongly Powered by AbleSci AI