An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest

组内相关 可靠性(半导体) 感兴趣区域 大脑皮层 神经科学 磁共振成像 人工智能 人脑 自动化方法 皮质(解剖学) 计算机科学 模式识别(心理学) 心理学 数学 医学 再现性 放射科 统计 物理 功率(物理) 量子力学
作者
Rahul S. Desikan,Florent Ségonne,Bruce Fischl,Brian T. Quinn,Bradford C. Dickerson,Deborah Blacker,Randy L. Buckner,Anders M. Dale,R. P. Maguire,Bradley T. Hyman,Marilyn Albert,Ronald Killiany
出处
期刊:NeuroImage [Elsevier BV]
卷期号:31 (3): 968-980 被引量:12243
标识
DOI:10.1016/j.neuroimage.2006.01.021
摘要

In this study, we have assessed the validity and reliability of an automated labeling system that we have developed for subdividing the human cerebral cortex on magnetic resonance images into gyral based regions of interest (ROIs). Using a dataset of 40 MRI scans we manually identified 34 cortical ROIs in each of the individual hemispheres. This information was then encoded in the form of an atlas that was utilized to automatically label ROIs. To examine the validity, as well as the intra- and inter-rater reliability of the automated system, we used both intraclass correlation coefficients (ICC), and a new method known as mean distance maps, to assess the degree of mismatch between the manual and the automated sets of ROIs. When compared with the manual ROIs, the automated ROIs were highly accurate, with an average ICC of 0.835 across all of the ROIs, and a mean distance error of less than 1 mm. Intra- and inter-rater comparisons yielded little to no difference between the sets of ROIs. These findings suggest that the automated method we have developed for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable. This method may be useful for both morphometric and functional studies of the cerebral cortex as well as for clinical investigations aimed at tracking the evolution of disease-induced changes over time, including clinical trials in which MRI-based measures are used to examine response to treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助puff采纳,获得10
1秒前
CCCCCL完成签到,获得积分10
1秒前
orixero应助王好让采纳,获得10
1秒前
1秒前
mahehivebv111完成签到,获得积分10
2秒前
Hibiscus95完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
刘钊扬完成签到,获得积分10
5秒前
传奇3应助张超采纳,获得10
5秒前
MZT完成签到,获得积分10
5秒前
嘟嘟包发布了新的文献求助30
6秒前
打工人发布了新的文献求助10
7秒前
lsy完成签到,获得积分10
7秒前
7秒前
李爱国应助依然小爽采纳,获得10
7秒前
8秒前
G1234发布了新的文献求助10
9秒前
小苏发布了新的文献求助10
11秒前
12秒前
Ava应助称心冰枫采纳,获得10
12秒前
淼淼完成签到 ,获得积分10
12秒前
13秒前
洁净的代容完成签到,获得积分10
14秒前
白啦啦完成签到 ,获得积分10
14秒前
14秒前
15秒前
清风完成签到,获得积分10
15秒前
Abrote完成签到,获得积分10
16秒前
Elarrina发布了新的文献求助20
17秒前
18秒前
19秒前
RogerCqz完成签到,获得积分10
19秒前
fenmiao发布了新的文献求助10
19秒前
嘟嘟包完成签到 ,获得积分10
20秒前
22秒前
王好让发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107910
求助须知:如何正确求助?哪些是违规求助? 3645867
关于积分的说明 11548920
捐赠科研通 3352109
什么是DOI,文献DOI怎么找? 1841832
邀请新用户注册赠送积分活动 908297
科研通“疑难数据库(出版商)”最低求助积分说明 825429