Are Convergent and Parallel Amino Acid Substitutions in Protein Evolution More Prevalent Than Neutral Expectations?

收敛演化 生物 上位性 分子进化 中性突变 中性分子进化理论 趋同(经济学) 进化生物学 系统发育学 氨基酸 遗传学 基因 平行进化 经济增长 经济
作者
Zhengting Zou,Jianzhi Zhang
出处
期刊:Molecular Biology and Evolution [Oxford University Press]
卷期号:32 (8): 2085-2096 被引量:123
标识
DOI:10.1093/molbev/msv091
摘要

Convergent and parallel amino acid substitutions in protein evolution, collectively referred to as molecular convergence here, have small probabilities under neutral evolution. For this reason, molecular convergence is commonly viewed as evidence for similar adaptations of different species. The surge in the number of reports of molecular convergence in the last decade raises the intriguing question of whether molecular convergence occurs substantially more frequently than expected under neutral evolution. We here address this question using all one-to-one orthologous proteins encoded by the genomes of 12 fruit fly species and those encoded by 17 mammals. We found that the expected amount of molecular convergence varies greatly depending on the specific neutral substitution model assumed at each amino acid site and that the observed amount of molecular convergence is explainable by neutral models incorporating site-specific information of acceptable amino acids. Interestingly, the total number of convergent and parallel substitutions between two lineages, relative to the neutral expectation, decreases with the genetic distance between the two lineages, regardless of the model used in computing the neutral expectation. We hypothesize that this trend results from differences in the amino acids acceptable at a given site among different clades of a phylogeny, due to prevalent epistasis, and provide simulation as well as empirical evidence for this hypothesis. Together, our study finds no genomic evidence for higher-than-neutral levels of molecular convergence, but suggests the presence of abundant epistasis that decreases the likelihood of molecular convergence between distantly related lineages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜白完成签到,获得积分0
1秒前
任小萱发布了新的文献求助10
1秒前
任虎完成签到,获得积分10
2秒前
8秒前
cc应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得30
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
达雨应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得80
8秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
勤恳雅莉应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
勤恳雅莉应助科研通管家采纳,获得10
9秒前
达雨应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
VDC应助科研通管家采纳,获得30
9秒前
彭于晏应助chengzhiheng采纳,获得30
10秒前
謃河鷺起完成签到,获得积分10
15秒前
16秒前
王珺完成签到 ,获得积分10
17秒前
任小萱完成签到,获得积分10
17秒前
科研废物完成签到,获得积分10
24秒前
Antonio完成签到 ,获得积分0
25秒前
25秒前
25秒前
nonosense完成签到,获得积分10
26秒前
CodeCraft应助鹏鹏爱科研采纳,获得10
27秒前
28秒前
29秒前
29秒前
30秒前
lin完成签到 ,获得积分10
31秒前
32秒前
lost完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560794
求助须知:如何正确求助?哪些是违规求助? 4646134
关于积分的说明 14677609
捐赠科研通 4587235
什么是DOI,文献DOI怎么找? 2516918
邀请新用户注册赠送积分活动 1490339
关于科研通互助平台的介绍 1461160