Data Processing of Point Clouds for Object Detection for Structural Engineering Applications

点云 计算机科学 激光扫描 分割 数据处理 方向(向量空间) 计算机视觉 人工智能 对象(语法) 图像处理 目标检测 特征(语言学) 航程(航空) 过程(计算) 激光器 图像(数学) 数据库 工程类 操作系统 光学 物理 哲学 语言学 航空航天工程 数学 几何学
作者
Sara B. Walsh,Daniel J. Borello,Burcu Güldür Erkal,Jerome F. Hajjar
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:28 (7): 495-508 被引量:109
标识
DOI:10.1111/mice.12016
摘要

Abstract This research investigates the use of high‐resolution three‐dimensional terrestrial laser scanners as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now able to capture over 1,000,000 points per second with an accuracy of ∼0.1 mm. This research focuses on developing the foundation toward the use of laser scanning to structural engineering applications, including structural health monitoring, collapse assessment, and post‐hazard response assessment. One of the keys to this work is to establish a process for extracting important information from raw laser‐scanned data sets such as the location, orientation, and size of objects in a scene, and location of damaged regions on a structure. A methodology for processing range data to identify objects in the scene is presented. Previous work in this area has created an initial foundation of basic data processing steps. Existing algorithms, including sharp feature detection and segmentation are implemented and extended in this work. Additional steps to remove extraneous and outlying points are added. Object detection based on a predefined library is developed allowing generic description of objects. The algorithms are demonstrated on synthetic scenes as well as validated on range data collected from an experimental test specimen and a collapsed bridge. The accuracy of the object detection is presented, demonstrating the applicability of the methodology. These additional steps and modifications to existing algorithms are presented to advance the performance of data processing on laser scan range data sets for future application in structural engineering applications such as robust determination of damage location and finite element modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
whyren完成签到,获得积分10
1秒前
小瑄完成签到 ,获得积分10
2秒前
一枝完成签到 ,获得积分10
2秒前
酷酷的涵蕾完成签到 ,获得积分10
3秒前
过时的又槐完成签到,获得积分10
8秒前
jhcraul完成签到,获得积分0
11秒前
gwbk完成签到,获得积分10
12秒前
Cry_Man完成签到 ,获得积分10
16秒前
17秒前
包包完成签到 ,获得积分10
20秒前
23秒前
美少叔叔发布了新的文献求助10
24秒前
ZH完成签到 ,获得积分10
26秒前
聪慧芷巧发布了新的文献求助10
26秒前
myuniv发布了新的文献求助10
26秒前
28秒前
woodword完成签到,获得积分10
30秒前
Fengzhen007完成签到,获得积分10
33秒前
聪慧芷巧发布了新的文献求助10
33秒前
美少叔叔发布了新的文献求助10
41秒前
研究生完成签到 ,获得积分10
45秒前
45秒前
1111完成签到 ,获得积分10
48秒前
xu完成签到,获得积分10
48秒前
hdc12138完成签到,获得积分10
51秒前
可爱的紫菜完成签到 ,获得积分0
52秒前
ty发布了新的文献求助10
53秒前
美少叔叔发布了新的文献求助10
56秒前
57秒前
59秒前
wangzhiqin发布了新的文献求助10
1分钟前
yaolei完成签到,获得积分10
1分钟前
一味愚完成签到,获得积分10
1分钟前
zz完成签到,获得积分10
1分钟前
诺布完成签到 ,获得积分10
1分钟前
1分钟前
可达鸭完成签到 ,获得积分10
1分钟前
陈曦发布了新的文献求助10
1分钟前
Raymond完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946216
求助须知:如何正确求助?哪些是违规求助? 3491121
关于积分的说明 11059069
捐赠科研通 3222070
什么是DOI,文献DOI怎么找? 1780839
邀请新用户注册赠送积分活动 865866
科研通“疑难数据库(出版商)”最低求助积分说明 800083