亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling distribution and abundance of multiple species: Different pooling strategies produce similar results

联营 丰度(生态学) 物种分布 相对物种丰度 人口 公制(单位) 生态学 生物 计算机科学 栖息地 人工智能 运营管理 社会学 人口学 经济
作者
Nicole K. S. Barker,Stuart M. Slattery,Marcel Darveau,Steve G. Cumming
出处
期刊:Ecosphere [Wiley]
卷期号:5 (12): 1-24 被引量:18
标识
DOI:10.1890/es14-00256.1
摘要

Quantifications of spatial distribution and abundance of animals are essential to identifying key landscape characteristics and targeting locations for conservation action. Since conservation decisions often focus on multiple species aggregated in groups, e.g., guild‐level, rather than individual species, predictions of species group abundance are of central importance. However, areas chosen for conservation action may differ if results from various modeling strategies also differ. Therefore, we compared three different strategies for modeling species group distribution and abundance: predict first, assemble later (PA); assemble first, predict later (AP); and the combined assemble, predict, then assemble (APA). All strategies were performed using Boosted Regression Trees (BRTs), which were fit to individual species data and then grouped after modeling, or fit to datasets that were grouped before modeling. Modeling strategies produced very similar results in terms of statistical performance assessed through four evaluation metrics and in spatial patterns in predicted abundance. To further assess potential functional implications of any numeric differences to conservation planning, we examined the relative proportion of the predicted population within existing Canadian protected areas. This metric further confirmed similarity in predictions from the three modeling strategies. Our results suggest that locations targeted for conservation action would be highly consistent among modeling strategies. Slight differences we observed in spatial predictions may be due to data coverage across species ranges, data quality, and the flexibility of the BRTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
先吃一只羊完成签到 ,获得积分10
1秒前
2秒前
蛋烘糕发布了新的文献求助10
6秒前
Aaaapear完成签到,获得积分10
8秒前
有风的地方完成签到 ,获得积分10
10秒前
善学以致用应助辉辉采纳,获得20
16秒前
科研通AI6应助Gryphon采纳,获得10
18秒前
Hello应助Mo采纳,获得30
21秒前
浮游应助科研通管家采纳,获得10
22秒前
mashibeo应助科研通管家采纳,获得10
22秒前
ceeray23应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
ceeray23应助科研通管家采纳,获得10
23秒前
ceeray23应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
天天快乐应助蛋烘糕采纳,获得30
24秒前
燕一完成签到,获得积分20
29秒前
SciGPT应助OvO_4577采纳,获得10
31秒前
35秒前
MiaCong完成签到 ,获得积分10
37秒前
44秒前
44秒前
44秒前
45秒前
光轮2000发布了新的文献求助10
50秒前
libaoguo发布了新的文献求助10
50秒前
科研通AI2S应助热柯柯采纳,获得10
50秒前
54秒前
55秒前
55秒前
健健康康发布了新的文献求助10
1分钟前
蓝桉完成签到 ,获得积分10
1分钟前
ANKAR发布了新的文献求助10
1分钟前
1分钟前
高兴士晋发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502707
求助须知:如何正确求助?哪些是违规求助? 4598475
关于积分的说明 14464188
捐赠科研通 4532037
什么是DOI,文献DOI怎么找? 2483794
邀请新用户注册赠送积分活动 1467025
关于科研通互助平台的介绍 1439644