Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals

脑电图 计算机科学 发作性 人工智能 癫痫发作 深度学习 癫痫 机器学习 水准点(测量) 模式识别(心理学) 主题(文档) 特征(语言学) 心理学 神经科学 哲学 语言学 图书馆学 地理 大地测量学
作者
Theekshana Dissanayake,Tharindu Fernando,Simon Denman,Sridha Sridharan,Clinton Fookes
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 527-538 被引量:71
标识
DOI:10.1109/jbhi.2021.3100297
摘要

Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LIJINGGE发布了新的文献求助10
1秒前
3秒前
wanci应助zzn采纳,获得10
6秒前
端庄梦桃发布了新的文献求助10
8秒前
9秒前
所所应助土豆采纳,获得10
10秒前
13秒前
Raymond发布了新的文献求助10
15秒前
19秒前
LIJINGGE发布了新的文献求助10
20秒前
领导范儿应助糯米糍采纳,获得10
21秒前
23秒前
24秒前
24秒前
ldh032应助哈哈哈采纳,获得10
25秒前
26秒前
26秒前
努力努力再努力CMY完成签到,获得积分10
28秒前
28秒前
zzn发布了新的文献求助10
29秒前
librahapper发布了新的文献求助10
29秒前
土豆发布了新的文献求助10
30秒前
東南風完成签到,获得积分10
31秒前
32秒前
32秒前
李健的小迷弟应助sugar采纳,获得10
33秒前
valere完成签到 ,获得积分10
33秒前
dududu发布了新的文献求助10
34秒前
34秒前
35秒前
科研通AI2S应助vex采纳,获得10
36秒前
Mandy完成签到,获得积分20
36秒前
heheha发布了新的文献求助10
38秒前
39秒前
39秒前
英姑应助dududu采纳,获得10
39秒前
40秒前
43秒前
LIJINGGE发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778743
求助须知:如何正确求助?哪些是违规求助? 3324286
关于积分的说明 10217819
捐赠科研通 3039427
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798533
科研通“疑难数据库(出版商)”最低求助积分说明 758401