The Classification of Six Common Skin Diseases Based on Xiangya-Derm: Development of a Chinese Database for Artificial Intelligence

人口 数据库 人工智能 医学 计算机科学 皮肤损伤 模式识别(心理学) 皮肤病科 环境卫生
作者
Kai Huang,Zixi Jiang,Yixin Li,Zhe Wu,Xian Wu,Wu Zhu,Mingliang Chen,Yu Zhang,Ke Zuo,Yi Li,Nianzhou Yu,Siliang Liu,Xing Huang,Juan Su,Mingzhu Yin,Buyue Qian,Xianggui Wang,Xiang Chen,Shuang Zhao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (9): e26025-e26025 被引量:30
标识
DOI:10.2196/26025
摘要

Background Skin and subcutaneous disease is the fourth-leading cause of the nonfatal disease burden worldwide and constitutes one of the most common burdens in primary care. However, there is a severe lack of dermatologists, particularly in rural Chinese areas. Furthermore, although artificial intelligence (AI) tools can assist in diagnosing skin disorders from images, the database for the Chinese population is limited. Objective This study aims to establish a database for AI based on the Chinese population and presents an initial study on six common skin diseases. Methods Each image was captured with either a digital camera or a smartphone, verified by at least three experienced dermatologists and corresponding pathology information, and finally added to the Xiangya-Derm database. Based on this database, we conducted AI-assisted classification research on six common skin diseases and then proposed a network called Xy-SkinNet. Xy-SkinNet applies a two-step strategy to identify skin diseases. First, given an input image, we segmented the regions of the skin lesion. Second, we introduced an information fusion block to combine the output of all segmented regions. We compared the performance with 31 dermatologists of varied experiences. Results Xiangya-Derm, as a new database that consists of over 150,000 clinical images of 571 different skin diseases in the Chinese population, is the largest and most diverse dermatological data set of the Chinese population. The AI-based six-category classification achieved a top 3 accuracy of 84.77%, which exceeded the average accuracy of dermatologists (78.15%). Conclusions Xiangya-Derm, the largest database for the Chinese population, was created. The classification of six common skin conditions was conducted based on Xiangya-Derm to lay a foundation for product research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
lion发布了新的文献求助10
1秒前
liaofr发布了新的文献求助30
1秒前
大个应助WZH采纳,获得10
2秒前
可爱的函函应助qiqi大宝贝采纳,获得10
3秒前
在水一方应助tzy02采纳,获得10
4秒前
caicai发布了新的文献求助10
4秒前
chaos发布了新的文献求助10
4秒前
奋斗映寒发布了新的文献求助10
4秒前
斯文败类应助酒笙采纳,获得10
4秒前
4秒前
5秒前
纯白色的现代水墨完成签到,获得积分20
5秒前
6秒前
hjyylab应助ning采纳,获得10
6秒前
6秒前
6秒前
6秒前
Azure完成签到,获得积分10
7秒前
7秒前
8秒前
taoj发布了新的文献求助50
8秒前
8秒前
大模型应助阿雷采纳,获得30
9秒前
9秒前
10秒前
KK完成签到,获得积分10
10秒前
lifeilong111完成签到,获得积分10
11秒前
约克宁完成签到,获得积分10
11秒前
子车谷波发布了新的文献求助30
12秒前
华仔应助枫叶采纳,获得10
12秒前
112233发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
guoyx发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838966
求助须知:如何正确求助?哪些是违规求助? 3381420
关于积分的说明 10518123
捐赠科研通 3100845
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821928
科研通“疑难数据库(出版商)”最低求助积分说明 773056