隐色素
磁接收
黄素组
物理
黄蛋白
鸣鸟
指南针
生物
生物物理学
磁场
遗传学
生态学
生物化学
地理
生物钟
地图学
基因
地球磁场
量子力学
酶
作者
Jingjing Xu,Lauren E. Jarocha,Tilo Zollitsch,Marcin Konowalczyk,Kevin B. Henbest,Sabine Richert,Matthew J. Golesworthy,Jessica Schmidt,Victoire Déjean,Daniel J. C. Sowood,Marco Bassetto,Jiate Luo,Jessica R. Walton,Jessica L. Fleming,Yujing Wei,Tommy L. Pitcher,Gabriel Moise,Maike Herrmann,Hang Yin,Haijia Wu
出处
期刊:Nature
[Nature Portfolio]
日期:2021-06-23
卷期号:594 (7864): 535-540
被引量:290
标识
DOI:10.1038/s41586-021-03618-9
摘要
Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4–7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin–tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds. Cryptochrome 4 from the night-migratory European robin displays magnetically sensitive photochemistry in vitro, in which four successive flavin–tryptophan radical pairs generate magnetic-field effects and stabilize potential signalling states.
科研通智能强力驱动
Strongly Powered by AbleSci AI