Lithium ferro phosphate battery state of charge estimation using particle filter

电池(电) 扩展卡尔曼滤波器 荷电状态 电池组 磷酸铁锂 颗粒过滤器 计算机科学 等效电路 估计员 汽车工程 模拟 卡尔曼滤波器 电气工程 工程类 电压 数学 功率(物理) 人工智能 物理 统计 量子力学
作者
Noor Iswaniza Md Siam,Tole Sutikno,Mohd Junaidi Abdul Aziz
出处
期刊:International Journal of Power Electronics and Drive Systems 卷期号:12 (2): 975-975 被引量:2
标识
DOI:10.11591/ijpeds.v12.i2.pp975-985
摘要

Lithium ferro phosphate (LiFePO<sub>4</sub>) has a promising battery technology with high charging/discharging behaviours make it suitable for electric vehicles (EVs) application. Battery state of charge (SOC) is a vital indicator in the battery management system (BMS) that monitors the charging and discharging operation of a battery pack. This paper proposes an electric circuit model for LiFePO<sub>4</sub> battery by using particle filter (PF) method to determine the SOC estimation of batteries precisely. The LiFePO<sub>4</sub> battery modelling is carried out using MATLAB software. Constant discharge test (CDT) is performed to measure the usable capacity of the battery and pulse discharge test (PDT) is used to determine the battery model parameters. Three parallel RC battery models have been chosen for this study to achieve high accuracy. The proposed PF implements recursive bayesian filter by Monte Carlo sampling which is robust for non-linear and/or non-Gaussian distributions. The accuracy of the developed electrical battery model is compared with experimental data for verification purpose. Then, the performance of the model is compared with experimental data and extended Kalman filter (EKF) method for validation purposed. A superior battery SOC estimator with higher accuracy compared to EKF method has been obtained.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助被淹死的鱼采纳,获得10
1秒前
LQL完成签到,获得积分20
1秒前
拜了个拜完成签到,获得积分20
1秒前
小马甲应助小陆采纳,获得10
2秒前
李李李李李完成签到,获得积分10
3秒前
LQL发布了新的文献求助30
4秒前
shutup发布了新的文献求助10
4秒前
冰魂应助哆啦顺利毕业采纳,获得20
5秒前
11秒前
Ava应助Zyra采纳,获得10
15秒前
15秒前
Rener完成签到,获得积分10
16秒前
16秒前
点点完成签到 ,获得积分10
17秒前
18秒前
20秒前
21秒前
丘比特应助静香采纳,获得10
21秒前
寻风发布了新的文献求助10
23秒前
23秒前
酷波er应助外向语蝶采纳,获得10
24秒前
24秒前
星星完成签到,获得积分10
25秒前
26秒前
深情安青应助sharon采纳,获得10
27秒前
28秒前
啦啦啦发布了新的文献求助10
28秒前
林小昀完成签到 ,获得积分10
29秒前
fransiccarey完成签到,获得积分10
29秒前
zhounan发布了新的文献求助10
30秒前
30秒前
30秒前
YJYELF完成签到,获得积分10
31秒前
32秒前
33秒前
caicai完成签到,获得积分20
33秒前
YJYELF发布了新的文献求助10
36秒前
caicai发布了新的文献求助10
36秒前
12345发布了新的文献求助10
37秒前
科目三应助科研通管家采纳,获得10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547