Convolutional Neural Networks for the evaluation of cancer in Barrett's esophagus: Explainable AI to lighten up the black-box

人工智能 卷积神经网络 计算机科学 机器学习 深度学习 判别式 黑匣子 学习迁移 分割 计算智能 反向传播 透明度(行为) 癌症 模式识别(心理学) 胰腺癌 巴雷特食管 人工神经网络 医学 皮肤癌 计算机安全
作者
Luis A. de Souza,Robert Mendel,Strasser Sophia,Alanna Ebigbo,Andreas Probst,Helmut Messmann,João Paulo Papa,Christoph Palm
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:135: 104578-104578 被引量:22
标识
DOI:10.1016/j.compbiomed.2021.104578
摘要

Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their level of accountability and transparency must be provided in such evaluations. The reliability related to machine learning predictions must be explained and interpreted, especially if diagnosis support is addressed. For this task, the black-box nature of deep learning techniques must be lightened up to transfer its promising results into clinical practice. Hence, we aim to investigate the use of explainable artificial intelligence techniques to quantitatively highlight discriminative regions during the classification of early-cancerous tissues in Barrett's esophagus-diagnosed patients. Four Convolutional Neural Network models (AlexNet, SqueezeNet, ResNet50, and VGG16) were analyzed using five different interpretation techniques (saliency, guided backpropagation, integrated gradients, input × gradients, and DeepLIFT) to compare their agreement with experts' previous annotations of cancerous tissue. We could show that saliency attributes match best with the manual experts' delineations. Moreover, there is moderate to high correlation between the sensitivity of a model and the human-and-computer agreement. The results also lightened that the higher the model's sensitivity, the stronger the correlation of human and computational segmentation agreement. We observed a relevant relation between computational learning and experts' insights, demonstrating how human knowledge may influence the correct computational learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DYLAN_ZZ完成签到,获得积分10
刚刚
L_nan完成签到,获得积分10
刚刚
rayce发布了新的文献求助10
1秒前
科目三应助归去来兮辞采纳,获得10
3秒前
yumeng发布了新的文献求助10
5秒前
5秒前
Jiaxin_Wu完成签到 ,获得积分10
5秒前
彭于晏应助落雁沙采纳,获得10
6秒前
6秒前
在水一方应助tttp采纳,获得10
6秒前
7秒前
9秒前
hfgeyt完成签到,获得积分10
9秒前
科研通AI5应助cyyf采纳,获得10
9秒前
顺利毕业mpa完成签到,获得积分10
10秒前
10秒前
moon发布了新的文献求助10
10秒前
科研通AI5应助李九月采纳,获得10
10秒前
xyw发布了新的文献求助10
10秒前
JamesPei应助liudy采纳,获得10
11秒前
搜集达人应助yumeng采纳,获得10
12秒前
叫我Le哥发布了新的文献求助10
12秒前
小胡完成签到,获得积分10
13秒前
14秒前
Zxy发布了新的文献求助10
14秒前
jimmy发布了新的文献求助10
15秒前
111关注了科研通微信公众号
15秒前
15秒前
lhtyzcg完成签到,获得积分10
16秒前
Noraaa完成签到,获得积分20
17秒前
明亮的犀牛完成签到,获得积分10
17秒前
18秒前
18秒前
kun发布了新的文献求助10
19秒前
20秒前
21秒前
杨杨by完成签到,获得积分10
21秒前
Noraaa发布了新的文献求助10
24秒前
cherish发布了新的文献求助10
24秒前
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806811
求助须知:如何正确求助?哪些是违规求助? 3351524
关于积分的说明 10354611
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684489
邀请新用户注册赠送积分活动 809716
科研通“疑难数据库(出版商)”最低求助积分说明 765635